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What is a topos?

Formal definition
A topos is a category which has finite limits, is cartesian closed
and has a subobject classifier.

Motto
A topos is a category which is sufficiently rich to support an
internal language.

Examples

m Set: category of sets
m Sh(X): category of set-valued sheaves on a space X
m Zar(S): big Zariski topos of a base scheme S
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. .
What is the internal language?

The internal language of a topos £ allows to

construct objects and morphisms of the topos,
formulate statements about them and
prove such statements

in a naive element-based language:

externally internally to £

object of £ set

morphism in &  map of sets
monomorphism injective map
epimorphism surjective map
group object group
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define
Ul ¢ (“pholdson U”)
for open subsets U C X and formulas .

First steps in synthetic algebraic geometry
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define
Ul ¢ (“pholdson U”)
for open subsets U C X and formulas .

Ukf=g:F == fluv=glveFU)

UEpAY = UEyandU =9

UkepVvy = LLpeort =7

there exists a covering U = | J; U; s. th. for all i:

U gor Ui =4

UEep=1 <= forallopen V C U: V |= ¢ implies V |= ¢

UEVf:F.o(f) <= forall sections f € F(V),V C U: V = ¢(f)

U = 3f : F. p(f) <= there exists a covering U = | J; U; s. th. for all i:
there exists f; € F(U;) s.th. U; = ¢(f})

First steps in synthetic algebraic geometry 4/18



Internal language Little Zariski Big Zariski Open tasks What is a topos? What is the internal language?

The internal language of Sh(X)

Crucial property: Locality
IfU=,U,thenU = ¢iff U |= ¢ forall i.

Crucial property: Soundness

If U = ¢ and if ¢ implies 1) constructively, then U = 9.
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The internal language of Sh(X)

Crucial property: Locality
IfU=,U,thenU = ¢iff U |= ¢ forall i.
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The internal language of Sh(X)

Crucial property: Locality
IfU=,U,thenU = ¢iff U |= ¢ forall i.

Crucial property: Soundness
If U = ¢ and if ¢ implies 1) constructively, then U |= 9.

no ¢ V -, no @ = ¢, no axiom of choice

A first glance at the constructive nature
mUEf=0 iff flu =0 € I'(U, F).
m U= ——(f =0) iff f = 0 on a dense open subset of U.
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The little Zariski topos

Definition
The little Zariski topos of a scheme X is the category Sh(X)

of set-valued sheaves on X.

m Internally, the structure sheaf Oy looks like
an ordinary ring.
m Internally, a sheaf of Ox-modules looks like

an ordinary module on that ring.

First steps in synthetic algebraic geometry 6/18



Internal language Little Zariski Big Zariski Open tasks

Dictionary Transfer principles Generic freeness

Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

externally internally to Sh(X)

sheaf of sets set

morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map

sheaf of rings ring

sheaf of modules module

sheaf of finite type finitely generated module

finite locally free sheaf
tensor product of sheaves
sheaf of Kahler differentials
dimension of X

finite free module

tensor product of modules
module of Kihler differentials
Krull dimension of Oy

First steps in synthetic algebraic geometry
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. . . .
Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

MISCONCEPTIONS ABOUT Ky

by Steven L. KLEIMAN

There are three common misconceptions about the sheaf K, of mero-

morphic functions on a ringed space X: (1) that Ky can be defined as the
sheaf associated tothe presheaf of total fraction rings,

® U T'(U, Oxdear»

see [EGAIV,, 20.1.3, p. 227] and [1, (3.2), p. 137]; (2) that the stalks
Ky, are equal to the total fraction rings (Ox ). see [EGA IV,, 20.1.1
and 20.1.3, pp. 226-7]; and (3) that if X is a scheme and U = Spec (4) is
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Using the dictionary

Let 0 > M - M — M"” — 0 be a short
exact sequence of modules. If M" and M” are
finitely generated, so is M.

|

Let 0 - F' - F — F” — 0 be a short
exact sequence of sheaves of Ox-modules.
If 7/ and F” are of finite type, so is F.
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Using the dictionary

Any finitely generated vector space does not
not possess a basis.

Any sheaf of modules of finite type on a re-

duced scheme is locally free on a dense open
subset.

Ravi Vakil: “Important hard exercise” (13.7.K).
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The objective

Understand notions and statements of algebraic geometry
as notions and statements of (constructive) commutative
algebra internal to the little Zariski topos.

Further topics regarding the little Zariski topos:

Transfer principles M <> M~
Understanding generic freeness

The curious role of affine open subsets
Quasicoherence

Spreading from points to neighbourhoods

m The relative spectrum
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Transfer principles

Question: How do the properties of

m an A-module M in Set and
m the Ox-module M™ in Sh(X), where X = Spec A, relate?
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Transfer principles

Question: How do the properties of

m an A-module M in Set and

m the Ox-module M™ in Sh(X), where X = Spec A, relate?
Observation: M~ = M[F '], where

m M is the constant sheaf with stalks M on X and

m F < Ais the generic prime filter with stalk A \ p at
p € Spec A.

Note: M and M share all first-order properties.
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Transfer principles

Question: How do the properties of

m an A-module M in Set and

m the Ox-module M™ in Sh(X), where X = Spec A, relate?
Observation: M~ = M[F '], where

m M is the constant sheaf with stalks M on X and

m F < Ais the generic prime filter with stalk A \ p at
p € Spec A.

Note: M and M share all first-order properties.

Answer: M"~ inherits those properties of M which are
stable under localisation.
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A curious property of the structure sheaf
Let X be a scheme. Internally to Sh(X),

any non-invertible element of Oy is nilpotent.

ON THE SPECTRUM OF A RINGED TOPOS 209

For completeness, two further remarks should be added to this treatment
of the spectrum. One is that in E the canonical map A— T (LA) is an
isomorphism—i.e., the representation of A4 in the ring of “global sections”
of LA is complete. The second, due to Mulvey in the case E =S, is that
in Spec(E, A) the formula

T(x e U(LA))=3In(x" =0)

is valid. This is surely important, though its precise significance is still
somewhat obscure—as is the case with many such nongeometric formulas.
In any case, calculations such as these are easier from the point of view of
the Heyting algebra of radical ideals of 4, and hence will be omitted here.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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Generic freeness

M

finitely
generated

_—
of finite type
If R is reduced (x" = 0 = x = 0), there is f # 0 in R such that

S[f~!] and M[f '] are free modules over R[f '],
R[f~'] — S[f"] is of finite presentation, and
M[f ] is finitely presented as a module over S[f!].
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Generic freeness

M

finitely
generated

of finite type
If R is reduced (x" = 0 = x = 0), there is f # 0 in R such that
S[f~'] and M[f '] are free modules over R[f '],

R[f~'] — S[f"] is of finite presentation, and
M[f ] is finitely presented as a module over S[f!].

For a trivial proof, employ Sh(Spec R) and exploit that

m Ospecr is a field: —(x invertible) = x = 0,
B Ospecr and Ospecr[Xi, - - . , Xu] are Noetherian in the sense
that any ideal is not not finitely generated.
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. .
Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

m locally ringed spaces
set of prime ideals of Z[X, Y, Z] /(X" + Y" — Z") +
Zariski topology + structure sheaf

m or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring — Set.

Ar—{(x,y,2) € A|x"+ y" — 2" = 0}
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Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

m locally ringed spaces
set of prime ideals of Z[X, Y, Z] /(X" + Y" — Z") +
Zariski topology + structure sheaf

m or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring — Set.

Ar—{(x,y,2) € A|x"+ y" — 2" = 0}

Synthetic approach: model schemes directly as sets in a
certain nonclassical set theory.

{(x,y,2) € (AT’ [x" +y" — 2" = 0}
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The big Zariski topos

Definition

The big Zariski topos Zar(S) of a scheme S is the category
Sh(Aft/S). It consists of functors (Aff/S)°® — Set satisfying
the gluing condition that

F(U) = [[FWU) = [[FU N U

is a limit diagram for any affine scheme U = | J, U; over S.

m For an S-scheme X, its functor of points X = Homg(+, X)
is an object of Zar(S). It feels like the set of points of X.

m Internally, A' (given by A'(X) = Ox(X)) looks like a field:
Zar(S) = Vx:A'. x # 0 = x invertible
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Synthetic constructions

P = {(x,. .., %) (AN | x £0V---Vx, #0}/(A")*

set of one-dimensional subspaces of (A')"*!,
| O(l) - (gv)gepn
= O(=1) = () ¢epr
m Euler sequence: 0 — £+ — ((A)"™1)Y = ¢V — 0

(11l

m Spec R = Homy,u1(R, A') = set of A'-valued points of R.
m SpecA'[X,Y,Z]/(X"+ Y" — Z") =

{(x,y,2) € (A" [x"+y" — 2" = 0}
m A :=SpecA'le]/(e?) 2 {e: Al |e? = 0}

m TX = Hom(A, X).
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Synthetic formulation of properties

m Spec R = Homyy,(s1) (R, A') = set of A'-valued points of R.
m An A'-module E is quasicoherent if and only if
E®,1 R — Hom(SpecR, E)

is an isomorphism for all finitely presented A'-algebras R.
m In particular, any map A' — A' is given by a polynomial.

17/18
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Synthetic formulation of properties

m Spec R = Homyy,(s1) (R, A') = set of A'-valued points of R.
m An A'-module E is quasicoherent if and only if
E®,1 R — Hom(SpecR, E)

is an isomorphism for all finitely presented A'-algebras R.
In particular, any map A' — A' is given by a polynomial.

m A subset U C X is qc-open if and only if for any x : X
there exist f;,...,f, € A' such that x € U < 3i. f; # 0.
Open subsets are —=—-stable: =—(x € U) = x € U.

If v : A — X is tangent vector with v(0) € U,

then y(e) € Uforalle € A.
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Synthetic formulation of properties

m Spec R = Homyy,(s1) (R, A') = set of A'-valued points of R.
m An A'-module E is quasicoherent if and only if

E®,1 R — Hom(SpecR, E)

is an isomorphism for all finitely presented A'-algebras R.
m In particular, any map A' — A' is given by a polynomial.

m A subset U C X is qc-open if and only if for any x : X
there exist f;,...,f, € A' such that x € U < 3i. f; # 0.
m Open subsets are ——-stable: =—(x € U) = x € U.
m Ifv: A — X is tangent vector with v(0) € U,
then y(e) € Uforalle € A.

m X is separated if and only if for any x, y : X, there exists a
quasicoherent ideal 7 C A' such that x = y <= J = (0).
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Semi-open and open tasks

m Do cohomology in the little Zariski topos; exploit that
higher direct images look like ordinary sheaf cohomology
from the internal point of view.

m Do cohomology in the big Zariski topos.
m Understand subtoposes of the big Zariski topos.

goobicia,

Hemm..

a complicated

sheaf of finite
!

ShX)

s an ordinary fintkely —
generated module!
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Understand notions and statements of algebraic ge-
ometry as notions and statements of algebra internal
to the little Zariski topos.

Develop a synthetic account of algebraic geometry.

m Simplify proofs and gain conceptual understanding.
m Understand relative geometry as absolute geometry.
m Contribute to constructive algebra.

http://tiny.cc/topos-notes

First steps in synthetic algebraic geometry 19/18
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Details on the internal language Spreading from points to neighbourh

Translating internal statements I

Let X be a topological space (or locale) and let « : F — G be a
morphism of sheaves on X. Then:

Sh(X) |= "« is surjective
<= Sh(X) EVt:G.3s: F.a(s) =t

<= for all open U C X, sections t € G(U):
there exists an open covering U = | J, U; and
sections s; € F(U;) such that:

ay,(si) = ty,

<= « is an epimorphism of sheaves

First steps in synthetic algebraic geometry
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Translating internal statements II

Let X be a topological space (or locale) and let s, t € F(X) be
global sections of a sheaf F on X. Then:

Sh(X) | (s = 1)
<~ Sh(X)E((s=t)=1)= 1
<= for all open U C X such that
for all open V C U such that
S|V - th:
it holds that V = (),
it holds that U = ()

<= there exists a dense open set W C X such that s|w = t|w

First steps in synthetic algebraic geometry 23/18
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Spreading from points to

neighbourhoods

All of the following lemmas have a short, sometimes trivial
proof. Let F be a sheaf of finite type on a ringed space X.
Let x € X. Let A C X be a closed subset. Then:

Fy = 0iff F|y = 0 for some open neighbourhood of x.
Fla = 0iff F|y = 0 for some open set containing A.

Fx can be generated by n elements iff this is true on some open

neighbourhood of x.
Homo, (F,G)x = Homo,  (Fx, Gyx) if F is of finite

presentation around x.

F is torsion iff F; vanishes (assume X integral and F
quasicoherent).

First steps in synthetic algebraic geometry B 24/18
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The smallest dense sublocale

Let X be a reduced scheme satisfying a technical condition. Let i :
X_— — X be the inclusion of the smallest dense sublocale of X.

Then i,i 'Oy = Ky.

m This is a highbrow way of saying “rational functions are
regular functions which are defined on a dense open subset”.

m Another reformulation is that ICx is the sheafification of Ox
with respect to the ——-modality.

m There is a generalization to nonreduced schemes.
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Details on the internal language Spreading from points to neighbourk  Group schemes

Group schemes

Motto: Internal to Zar(S), group schemes look like ordinary

groups.
group scheme internal definition functor of points: X — ...
Ga A (as additive group)  Ox(X)
Gm {x:A'|"xinv."} Ox(X)*
fin {x:Al[x" =1} {feoxX)|f"=1}
GLy, {M:A"™"|"TMinv.7}  GL,(Ox(X))

First steps in synthetic algebraic geometry 26/18
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Applications in algebra

Let A be a commutative ring. The internal language

of Sh(Spec A) allows you to say “without loss of generality, we
may assume that A is local”, even constructively.

The kernel of any matrix over a principial ideal
domain is finitely generated.

The kernel of any matrix over a Priiffer domain
is finitely generated.
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Hilbert’s program in algebra

There is a way to combine some of the powerful tools of classical ring theory with the advan-
tages that constructive reasoning provides, for instance exhibiting explicit witnesses. Namely
we can devise a language in which we can usefully talk about prime ideals, but which substi-
tutes non-constructive arguments by constructive arguments “behind the scenes”. The key idea
is to substitute the phrase “for all prime ideals” (or equivalently “for all prime filters”) by “for
the generic prime filter”.

More specifically, simply interpret a given proof using prime filters in Sh(Spec A) and let it refer

to F — A
Statement constructive substitution meaning
x € p for all p. x & F. x is nilpotent.
x € p for all p such that y € p. xeF=yeF. x € /().
x is regular in all stalks Ay. x is regular in A[F 1] x is regular in A.
The stalks Ay are reduced. A[F 1] is reduced. A is reduced.
The stalks M, vanish. M[F~ 1 =o. M=0.
The stalks My, are flat over Ap. M[F 1] is flat over A[F~1]. M is flat over A.

The maps Mp — N}, are injective. M[F~1] — N[F~1is injective. M — N is injective.
The maps My — N are surjective. ~ M[F '] — N[F 1] is surjective. =~ M — N is surjective.

This is related (in a few cases equivalent) to the dynamical methods in algebra explored by
Coquand, Coste, Lombardi, Roy, and others. Their approach is more versatile.
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The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(€/F)(U) = EU)/F(U)

(€ Qoy F)(U) = E(U) @ox ) F(U)
Eiors(U) = E(U)ors  (sometimes)
Kx(U) = Quot Ox(U) (sometimes)

First steps in synthetic algebraic geometry 29/18
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The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(€/F)(U) = EU)/F(U)

(€ Qoy F)(U) = E(U) @ox ) F(U)
Eiors(U) = E(U)ors  (sometimes)
Kx(U) = Quot Ox(U) (sometimes)

A calculation:

M~ ®0, N” = M[F '] @ar-— N[F '] = (M®4 N)[F]
= (M@AN)[F '] =(M®sN)"~.
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The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(€/F)(U) = EU)/F(U)

(€ Qoy F)(U) = E(U) @ox ) F(U)
Eiors(U) = E(U)ors  (sometimes)
Kx(U) = Quot Ox(U) (sometimes)

A calculation:
M~ ®p, N~ = M[F | @7y N[F '] = (M®4 N)[F ']
= (M®,N)[F = (M®,N)".

Answer: Because localisation commutes with quotients, tensor
products, torsion submodules (sometimes), ...

First steps in synthetic algebraic geometry 29/18
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Quasicoherence

Let X be a scheme. Let £ be an Ox-module.
Then €& is quasicoherent if and only if, internally to Sh(X),

E[f "] is a Os-sheaf for any f : Ox,
where [y := (f invertible = ¢).

First steps in synthetic algebraic geometry 30/18
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Quasicoherence
Let X be a scheme. Let £ be an Ox-module.

Then €& is quasicoherent if and only if, internally to Sh(X),

E[f "] is a Os-sheaf for any f : Ox,
where [y := (f invertible = ¢).

In particular: If £ is quasicoherent, then internally

(f invertible = s = 0) = \/f”s =0

n>0

forany f : Ox ands: €.
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The [-translation

Let & — & be a subtopos given by a local operator. Then

EnkEye iff £

where the translation ¢ — (" is given by:

(s=t)":=0(s=1)
(p A)~ = D™ A7)

(p Vo) =0 V)
(p=¥)~ :=0(¢" = ¢")
(Vx: X. o(x))” = [(Vx: X. ¢ (x))
(Ix: X. p(x)” = 03x: X. o7 (x))

First steps in synthetic algebraic geometry 31/18
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The [-translation

Let & — & be a subtopos given by a local operator. Then

Let X be a scheme. Depending on [, Sh(X) = Oy means

that ¢ holds on ...
® ... a dense open subset.
® ... a schematically dense open subset.
® ... a given open subset U.
® ... an open subset containing a given closed subset A.
® ... an open neighbourhood of a given point x € X.

Can tackle the question “p" = Oe” logically.

First steps in synthetic algebraic geometry 31/18
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space of the prime ideals of A

First steps in synthetic algebraic geometry 32/18
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := tapological space-efthe-primedealsof A
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := tapological space-efthe-primedealsof A

:= topological space of the prime filters of A
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space-ef-the-primetdeals of A

. . N . o1 Lot
:= topological space-of-theprimefiltersof A
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space-ef-the-primetdeals of A

. o -
tapological space-of-theprimrefiltersof A

:= locale of the prime filters of A

The frame of opens of Spec A is the frame of radical ideals in A.
Universal property:

HomLRT/|5\(T7 Spec A) = HomRing(S) <A7 N*OT>

for all locally ringed toposes T equipped with a geometric
morphism T & £.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
Homy g /x(T, Specy A) = Homajgoy) (A, 11:07)

for all locally ringed locales T over X.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
Homy g /x(T, Specy A) = Homajgoy) (A, 11:O07)
for all locally ringed locales T over X.
m Spec, Ox = X.

m Spec A is the one-point locale iff every element of A is
invertible or nilpotent.

m Every element of Ox which is not invertible is nilpotent.

m Thus cannot prove Spec Ox = pt internally.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
Homy g /x(T, Specy A) = Homajgoy) (A, 11:07)
for all locally ringed locales T over X.

Solution: Define internally the frame of Spec, A to be the
frame of those radical ideals I C A such that

Vf:Ox.Vs: A. (f invertible in Ox = s € ) = fs € I.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
Homy g /x(T, Specy A) = Homajgoy) (A, 11:07)
for all locally ringed locales T over X.

Solution: Define internally the frame of Spec, A to be the
frame of those radical ideals I C A such that

Vf:Ox.Vs: A. (f invertible in Ox = s € ) = fs € I.
Its points are those prime filters G of A such that
Vf:Ox.p(f) € G= f invertible in Ox.

First steps in synthetic algebraic geometry 33/18



Details on the internal language Spreading from points to neighbourk  Affine opens Quasicoherence Spreading Relative spectrum The ét

The relative spectrum, reformulated

Let B — A be an algebra in a topos.

Is there a free local and local-over-B ring A — A’ over A?

local
/\Iocal
B A R
7
7
-
7
»
4 RN
00‘3/ I - N
local

Form limits in the category of locally ringed locales by
relocalising the corresponding limit in ringed locales.
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The étale subtopos

Recall that the Kummer sequence is not exact in Zar(S) at
the third term:

1— i — (A< 5 Al 1
But we have:

Zar(S) = Vf: (A . Oa(3g: (AN f = g"),

where U is such that Zar(S)n, < Zar(S) is the big étale
topos of S. It is the largest subtopos of Zar(S) where

TA' is separably closed

holds [reinterpretation of Wraith, PSSL 1].
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