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Ravi Vakil: “Important hard
exercise” (13.7.K).
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What is a topos?

Formal de�nition
A topos is a category which has �nite limits, is cartesian closed
and has a subobject classi�er.

Motto
A topos is a category which is su�ciently rich to support an
internal language.

Examples
Set: category of sets
Sh(X): category of set-valued sheaves on a space X
Zar(S): big Zariski topos of a base scheme S
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What is the internal language?

The internal language of a topos E allows to

1 construct objects and morphisms of the topos,
2 formulate statements about them and
3 prove such statements

in a naive element-based language:

externally internally to E

object of E set
morphism in E map of sets
monomorphism injective map
epimorphism surjective map
group object group
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The internal language of Sh(X)

Let X be a topological space. Then we recursively de�ne

U |= ϕ (“ϕ holds on U ”)

for open subsets U ⊆ X and formulas ϕ.

U |= f = g :F :⇐⇒ f |U = g|U ∈ F(U )

U |= ϕ ∧ ψ :⇐⇒ U |= ϕ and U |= ψ

U |= ϕ ∨ ψ :⇐⇒ U |= ϕ or U |= ψ

there exists a covering U =
⋃

i Ui s. th. for all i:
Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ :⇐⇒ for all open V ⊆ U : V |= ϕ implies V |= ψ

U |= ∀f :F . ϕ(f ) :⇐⇒ for all sections f ∈ F(V ),V ⊆ U : V |= ϕ(f )

U |= ∃f :F . ϕ(f ) :⇐⇒ there exists a covering U =
⋃

i Ui s. th. for all i:
there exists fi ∈ F(Ui) s. th. Ui |= ϕ(fi)
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The internal language of Sh(X)

Crucial property: Locality
If U =

⋃
i Ui, then U |= ϕ i� Ui |= ϕ for all i.

Crucial property: Soundness
If U |= ϕ and if ϕ implies ψ constructively, then U |= ψ.

A �rst glance at the constructive nature
U |= f = 0 i� f |U = 0 ∈ Γ(U ,F).
U |= ¬¬(f = 0) i� f = 0 on a dense open subset of U .
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The little Zariski topos

De�nition
The little Zariski topos of a scheme X is the category Sh(X)
of set-valued sheaves on X .

Internally, the structure sheaf OX looks like

an ordinary ring.

Internally, a sheaf of OX -modules looks like

an ordinary module on that ring.
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Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

externally internally to Sh(X)

sheaf of sets set
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map

sheaf of rings ring
sheaf of modules module
sheaf of �nite type �nitely generated module
�nite locally free sheaf �nite free module
tensor product of sheaves tensor product of modules
sheaf of Kähler di�erentials module of Kähler di�erentials
dimension of X Krull dimension of OX
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Using the dictionary

Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of modules. If M ′ and M ′′ are
�nitely generated, so is M .

⇓
Let 0 → F ′ → F → F ′′ → 0 be a short
exact sequence of sheaves of OX -modules.
If F ′ and F ′′ are of �nite type, so is F .
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Using the dictionary

Any �nitely generated vector space does not
not possess a basis.

⇓
Any sheaf of modules of �nite type on a re-
duced scheme is locally free on a dense open
subset.

Ravi Vakil: “Important hard exercise” (13.7.K).
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The objective

Understand notions and statements of algebraic geometry
as notions and statements of (constructive) commutative
algebra internal to the little Zariski topos.

Further topics regarding the little Zariski topos:
Transfer principles M ↔ M∼

Understanding generic freeness
The curious role of a�ne open subsets
Quasicoherence
Spreading from points to neighbourhoods
The relative spectrum
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Transfer principles

Question: How do the properties of

an A-module M in Set and
the OX -module M∼ in Sh(X), where X = SpecA, relate?

Observation: M∼ = M[F−1], where

M is the constant sheaf with stalks M on X and
F ↪→ A is the generic prime �lter with stalk A \ p at
p ∈ SpecA.

Note: M and M share all �rst-order properties.

Answer: M∼ inherits those properties of M which are
stable under localisation.
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A curious property of the structure sheaf

Let X be a scheme. Internally to Sh(X),

any non-invertible element ofOX is nilpotent.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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Generic freeness
M

�nitely
generated

R
of �nite type

// S

If R is reduced (xn = 0⇒ x = 0), there is f 6= 0 in R such that

1 S[f −1] and M[f −1] are free modules over R[f −1],
2 R[f −1]→ S[f −1] is of �nite presentation, and
3 M[f −1] is �nitely presented as a module over S[f −1].

For a trivial proof, employ Sh(Spec R) and exploit that

OSpec R is a �eld: ¬(x invertible)⇒ x = 0,
OSpec R andOSpec R[X1, . . . ,Xn] are Noetherian in the sense
that any ideal is not not �nitely generated.
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Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

locally ringed spaces

set of prime ideals of Z[X , Y ,Z ]/(Xn + Yn − Zn) +

Zariski topology + structure sheaf

or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring→ Set.

A 7−→ {(x, y, z) ∈ A3 | xn + yn − zn = 0}

Synthetic approach: model schemes directly as sets in a
certain nonclassical set theory.

{(x, y, z) ∈ (A1)3 | xn + yn − zn = 0}
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The big Zariski topos

De�nition
The big Zariski topos Zar(S) of a scheme S is the category
Sh(A�/S). It consists of functors (A�/S)op → Set satisfying
the gluing condition that

F(U )→
∏
i

F(Ui)⇒
∏
j,k

F(Uj ∩ Uk)

is a limit diagram for any a�ne scheme U =
⋃

i Ui over S.

For an S-scheme X , its functor of points X = HomS(·,X)
is an object of Zar(S). It feels like the set of points of X .
Internally, A1 (given by A1(X) = OX(X)) looks like a �eld:

Zar(S) |= ∀x :A1. x 6= 0 =⇒ x invertible
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Synthetic constructions

Pn = {(x0, . . . , xn) : (A1)n+1 | x0 6= 0∨· · ·∨xn 6= 0}/(A1)×

∼= set of one-dimensional subspaces of (A1)n+1.
O(1) = (`∨)`∈Pn

O(−1) = (`)`∈Pn

Euler sequence: 0→ `⊥ → ((A1)n+1)∨ → `∨ → 0

Spec R = HomAlg(A1)(R,A1) = set of A1-valued points of R.

SpecA1[X , Y ,Z ]/(Xn + Yn − Zn) ∼=
{(x, y, z) ∈ (A1)3 | xn + yn − zn = 0}

∆ := SpecA1[ε]/(ε2) ∼= {ε : A1 | ε2 = 0}

TX = Hom(∆,X).
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Synthetic formulation of properties

Spec R = HomAlg(A1)(R,A1) = set of A1-valued points of R.
An A1-module E is quasicoherent if and only if

E ⊗A1 R −→ Hom(Spec R, E)

is an isomorphism for all �nitely presented A1-algebras R.
In particular, any map A1 → A1 is given by a polynomial.

A subset U ⊆ X is qc-open if and only if for any x : X
there exist f1, . . . , fn ∈ A1 such that x ∈ U ⇐⇒ ∃i. fi 6= 0.
Open subsets are ¬¬-stable: ¬¬(x ∈ U ) =⇒ x ∈ U .
If γ : ∆→ X is tangent vector with γ(0) ∈ U ,
then γ(ε) ∈ U for all ε ∈ ∆.

X is separated if and only if for any x, y : X , there exists a
quasicoherent ideal J ⊆ A1 such that x = y ⇐⇒ J = (0).
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Semi-open and open tasks

Do cohomology in the little Zariski topos; exploit that
higher direct images look like ordinary sheaf cohomology
from the internal point of view.
Do cohomology in the big Zariski topos.
Understand subtoposes of the big Zariski topos.
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Understand notions and statements of algebraic ge-
ometry as notions and statements of algebra internal
to the little Zariski topos.

Develop a synthetic account of algebraic geometry.

Simplify proofs and gain conceptual understanding.
Understand relative geometry as absolute geometry.
Contribute to constructive algebra.

http://tiny.cc/topos-notes
First steps in synthetic algebraic geometry 19 / 18
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Translating internal statements I

Let X be a topological space (or locale) and let α : F → G be a
morphism of sheaves on X . Then:

Sh(X) |= pα is surjectiveq

⇐⇒ Sh(X) |= ∀t :G.∃s :F . α(s) = t

⇐⇒ for all open U ⊆ X , sections t ∈ G(U ):
there exists an open covering U =

⋃
i Ui and

sections si ∈ F(Ui) such that:
αUi(si) = t|Ui

⇐⇒ α is an epimorphism of sheaves
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Translating internal statements II

Let X be a topological space (or locale) and let s, t ∈ F(X) be
global sections of a sheaf F on X . Then:

Sh(X) |= ¬¬(s = t)

⇐⇒ Sh(X) |= ((s = t)⇒ ⊥)⇒ ⊥

⇐⇒ for all open U ⊆ X such that
for all open V ⊆ U such that

s|V = t|V ,
it holds that V = ∅,

it holds that U = ∅

⇐⇒ there exists a dense open set W ⊆ X such that s|W = t|W

First steps in synthetic algebraic geometry 23 / 18



Details on the internal language Spreading from points to neighbourhoods The meromorphic functions revisited Applications in algebra

Spreading from points to
neighbourhoods

All of the following lemmas have a short, sometimes trivial
proof. Let F be a sheaf of �nite type on a ringed space X .
Let x ∈ X . Let A ⊆ X be a closed subset. Then:

1 Fx = 0 i� F|U = 0 for some open neighbourhood of x.

2 F|A = 0 i� F|U = 0 for some open set containing A.

3 Fx can be generated by n elements i� this is true on some open
neighbourhood of x.

4 HomOX (F ,G)x ∼= HomOX,x (Fx ,Gx) if F is of �nite
presentation around x.

5 F is torsion i� Fξ vanishes (assume X integral and F
quasicoherent).

6 F is torsion i� F|Ass(OX ) vanishes (assume X locally Noetherian
and F quasicoherent).

First steps in synthetic algebraic geometry 24 / 18



Details on the internal language Spreading from points to neighbourhoods The meromorphic functions revisited Applications in algebraGroup schemes

The smallest dense sublocale

Let X be a reduced scheme satisfying a technical condition. Let i :
X¬¬ → X be the inclusion of the smallest dense sublocale of X .

Then i∗i−1OX
∼= KX .

This is a highbrow way of saying “rational functions are
regular functions which are de�ned on a dense open subset”.
Another reformulation is thatKX is the shea��cation ofOX

with respect to the ¬¬-modality.
There is a generalization to nonreduced schemes.
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Group schemes

Motto: Internal to Zar(S), group schemes look like ordinary
groups.

group scheme internal de�nition functor of points: X 7→ . . .

Ga A1 (as additive group) OX (X)

Gm {x :A1 | px inv.q} OX (X)×

µn {x :A1 | xn = 1} {f ∈ OX (X) | f n = 1}

GLn {M :A1n×n | pM inv.q} GLn(OX (X))
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Applications in algebra

Let A be a commutative ring. The internal language
of Sh(SpecA) allows you to say “without loss of generality, we
may assume that A is local”, even constructively.

The kernel of any matrix over a principial ideal
domain is �nitely generated.

⇓
The kernel of any matrix over a Prüfer domain
is �nitely generated.
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Hilbert’s program in algebra
There is a way to combine some of the powerful tools of classical ring theory with the advan-
tages that constructive reasoning provides, for instance exhibiting explicit witnesses. Namely
we can devise a language in which we can usefully talk about prime ideals, but which substi-
tutes non-constructive arguments by constructive arguments “behind the scenes”. The key idea
is to substitute the phrase “for all prime ideals” (or equivalently “for all prime �lters”) by “for
the generic prime �lter”.

More speci�cally, simply interpret a given proof using prime �lters in Sh(SpecA) and let it refer
to F ↪→ A.

Statement constructive substitution meaning

x ∈ p for all p. x 6∈ F . x is nilpotent.
x ∈ p for all p such that y ∈ p. x ∈ F ⇒ y ∈ F . x ∈

√
(y).

x is regular in all stalks Ap. x is regular in A[F−1]. x is regular in A.
The stalks Ap are reduced. A[F−1] is reduced. A is reduced.
The stalks Mp vanish. M[F−1] = 0. M = 0.
The stalks Mp are �at over Ap. M[F−1] is �at over A[F−1]. M is �at over A.
The maps Mp → Np are injective. M[F−1]→ N [F−1] is injective. M → N is injective.
The maps Mp → Np are surjective. M[F−1]→ N [F−1] is surjective. M → N is surjective.

This is related (in a few cases equivalent) to the dynamical methods in algebra explored by
Coquand, Coste, Lombardi, Roy, and others. Their approach is more versatile.
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The curious role of a�ne open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves E and F and a�ne open subsets U?

(E/F)(U ) = E(U )/F(U )

(E ⊗OX F)(U ) = E(U )⊗OX (U ) F(U )

Etors(U ) = E(U )tors (sometimes)
KX(U ) = QuotOX(U ) (sometimes)

A calculation:

M∼ ⊗OU N
∼ = M[F−1]⊗A[F−1] N [F−1] = (M ⊗A N )[F−1]

= (M ⊗A N )[F−1] = (M ⊗A N )∼.

Answer: Because localisation commutes with quotients, tensor
products, torsion submodules (sometimes), . . .
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Quasicoherence

Let X be a scheme. Let E be an OX -module.

Then E is quasicoherent if and only if, internally to Sh(X),

E [f −1] is a �f -sheaf for any f : OX ,
where �fϕ :≡ (f invertible⇒ ϕ).

In particular: If E is quasicoherent, then internally

(f invertible⇒ s = 0) =⇒
∨
n≥0

f ns = 0

for any f : OX and s : E .
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The �-translation

Let E� ↪→ E be a subtopos given by a local operator. Then

E� |= ϕ i� E |= ϕ�,

where the translation ϕ 7→ ϕ� is given by:

(s = t)� :≡ �(s = t)

(ϕ ∧ ψ)� :≡ �(ϕ� ∧ ψ�)

(ϕ ∨ ψ)� :≡ �(ϕ� ∨ ψ�)

(ϕ⇒ ψ)� :≡ �(ϕ� ⇒ ψ�)

(∀x :X . ϕ(x))� :≡ �(∀x :X . ϕ�(x))

(∃x :X . ϕ(x))� :≡ �(∃x :X . ϕ�(x))
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The �-translation

Let E� ↪→ E be a subtopos given by a local operator. Then

E� |= ϕ i� E |= ϕ�.

Let X be a scheme. Depending on �, Sh(X) |= �ϕ means
that ϕ holds on . . .

. . . a dense open subset.

. . . a schematically dense open subset.

. . . a given open subset U .

. . . an open subset containing a given closed subset A.

. . . an open neighbourhood of a given point x ∈ X .

Can tackle the question “ϕ� ?⇒ �ϕ” logically.
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The absolute spectrum, internalised

Let A be a commutative ring in a topos E .
To construct the free local ring over A, give a constructive
account of the spectrum:

SpecA := topological space of the prime ideals of A

The frame of opens of SpecA is the frame of radical ideals in A.
Universal property:

HomLRT/|E|(T , SpecA) ∼= HomRing(E)(A, µ∗OT )

for all locally ringed toposes T equipped with a geometric
morphism T

µ−→ E .
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Let A be a commutative ring in a topos E .
To construct the free local ring over A, give a constructive
account of the spectrum:

SpecA := topological space of the prime ideals of A
:= topological space of the prime �lters of A
:= locale of the prime �lters of A
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The relative spectrum

Let X be a scheme and A be a quasicoherent OX -algebra. Can
we describe its relative spectrum SpecX A → X internally?
Desired universal property:

HomLRL/X(T , SpecX A) ∼= HomAlg(OX )(A, µ∗OT )

for all locally ringed locales T over X .

Solution: De�ne internally the frame of SpecX A to be the
frame of those radical ideals I ⊆ A such that

∀f :OX .∀s :A. (f invertible in OX ⇒ s ∈ I) =⇒ fs ∈ I .

Its points are those prime �lters G of A such that

∀f :OX . ϕ(f ) ∈ G =⇒ f invertible in OX .
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we describe its relative spectrum SpecX A → X internally?
Desired universal property:

HomLRL/X(T , SpecX A) ∼= HomAlg(OX )(A, µ∗OT )

for all locally ringed locales T over X .

Beware of believing false statements
SpecX OX = X .
SpecA is the one-point locale i� every element of A is
invertible or nilpotent.
Every element of OX which is not invertible is nilpotent.
Thus cannot prove SpecOX = pt internally.
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The relative spectrum, reformulated

Let B→ A be an algebra in a topos.

Is there a free local and local-over-B ring A→ A′ over A?

B //

local

''

local ))

A

��

// local
R

A′
local

local

99

Form limits in the category of locally ringed locales by
relocalising the corresponding limit in ringed locales.
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The étale subtopos

Recall that the Kummer sequence is not exact in Zar(S) at
the third term:

1 −→ µn −→ (A1)×
(·)n−→ (A1)× −→ 1

But we have:

Zar(S) |= ∀f : (A1)×.�ét(∃g : (A1)×. f = gn),

where �ét is such that Zar(S)�ét ↪→ Zar(S) is the big étale
topos of S. It is the largest subtopos of Zar(S) where

pA1 is separably closedq

holds [reinterpretation of Wraith, PSSL 1].
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