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Abstract

We describe how the internal language of certain toposes, the associated
small and big Zariski toposes of a scheme, can be used to give simpler defi-
nitions and more conceptual proofs of the basic notions and observations in
algebraic geometry.

The starting point is that, from the internal point of view, sheaves of rings
and sheaves of modules look just like plain rings and plain modules. In
this way, some concepts and statements of scheme theory can be reduced to
concepts and statements of intuitionistic linear algebra.

Furthermore, modal operators can be used to model phrases such as “on a
dense open subset it holds that” or “on an open neighbourhood of a given
point it holds that”. These operators define certain subtoposes; a generaliza-
tion of the double-negation translation is useful in order to understand the
internal universe of those subtoposes from the internal point of view of the
ambient topos.

A particularly interesting task is to internalize the construction of the relative
spectrum, which, given a quasicoherent sheaf of algebras on a scheme X,
yields a scheme over X. From the internal point of view, this construction
should simply reduce to an intuitionistically sensible variant of the ordinary
construction of the spectrum of a ring, but it turns out that this expectation
is too naive and that a refined approach is necessary.



What is a scheme?

A manifold is a space which is locally isomorphic to
some open subset of some Rn.

A scheme is a space which is locally isomorphic to
the spectrum of some (commutative) ring:

Spec A := {p ⊆ A | p is a prime ideal}

By space we mean: topological space X equipped with
a local sheaf OX of rings.

a manifold Mumford’s treasure map of Spec Z[X]
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A sheaf of rings on a topological space X is a ring object in Sh(X),
the category of set-valued sheaves on X.

A sheaf OX of rings is local if and only if all the stalks OX,x are
local rings. Why not demand that the sets of sections OX(U)
are local rings? This has a geometric meaning, but can also be
motivated from a logical point of view: A sheaf of rings is local
if and only if, from the point of view of the internal language
of Sh(X), it is a local ring.

Think of OX as the sheaf of “number-valued functions” on X. In
algebraic geometry, this structure sheaf is a crucial part of the
data: Wildly different schemes can have the same underlying
topological space.



What is a topos?

Formal definition
A topos is a category which has finite limits, is cartesian
closed and has a subobject classifier.

Motto
A topos is a category which is sufficiently rich to support
an internal language.

Examples

Set: category of sets
Sh(X): category of set-valued sheaves on a space X
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While technically correct, the formal definition is actually mis-
leading in a sense: A topos has lots of other vital structure, which
is crucial for a rounded understanding, but is not listed in the
definition (which is trimmed for minimality).

A more comprehensive definition is: A topos is a locally cartesian
closed, finitely complete and cocomplete Heyting category which
is exact, extensive and has a subobject classifier.

Check out an article by Tom Leinster for a leisurely introduction
to topos theory.

https://ncatlab.org/publications/published/Leinster2011


What is the internal language?

Let E be a topos. Then we can define the meaning of

E |= ϕ (“ϕ holds in E”)

for formulas ϕ over E using the Kripke–Joyal semantics.

externally internally to E

object of E set/type
morphism in E map of sets
monomorphism injective map
epimorphism surjective map
ring object ring
module object module

If ϕ implies ψ intuitionistically, then E |= ϕ implies E |= ψ.
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• Actually, the objects of E feel more like types instead of
sets: For instance, there is no global membership relation ∈.
Rather, for each object A of E , there is a relation ∈A : A×
P(A) → Ω, where P(A) is the power object of A and Ω
is the object of truth values of E (can be understood as the
power object of a terminal object).

• Compare with the embedding theorem for abelian cate-
gories: There, an explicit embedding into a category of mod-
ules is constructed. Here, we only change perspective and
talk about the same objects and morphisms.

• There exists a weaker variant of the internal language which
works in abelian categories. By using it, one can even pre-
tend that the objects are abelian groups (instead of modules),
and when constructing morphisms by appealing to the ax-
iom of unique choice (which is a theorem), one doesn’t even
have to check linearity. The proof that this approach works
uses only categorical logic.



• The translation of internal statements into external ones
is facilitated by an easy mechanical procedure which one
quickly grows accustomed to. See more details.

• The internal language of a sheaf topos of a T1-space is clas-
sical (that is, verifies the principle of excluded middle) if
and only if the space is discrete. That’s a not particularly
interesting special case.

• See Section 2.4 of these notes for remarks on how to appre-
ciate intuitionistic logic.

https://rawgit.com/iblech/internal-methods/master/notes.pdf


Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

externally internally to Sh(X)

sheaf of sets set/type
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map

sheaf of rings ring
sheaf of modules module
sheaf of finite type finitely generated module
finite locally free sheaf finite free module
coherent sheaf coherent module
tensor product of sheaves tensor product of modules
rank function minimal number of generators
sheaf of rational functions total quotient ring of OX
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See the notes for more dictionary entries.

The simple definition of KX allows to give an internal account of
the basics of the theory of Cartier divisors, for instance giving an
easy description of the line bundle associated to a Cartier divisor.

https://rawgit.com/iblech/internal-methods/master/notes.pdf


Using the dictionary

Let X be a scheme. Employ its small Zariski topos: Sh(X).

Let 0 → M′ → M → M′′ → 0 be a short
exact sequence of modules. If M′ and M′′

are finitely generated, so is M.

⇓
Let 0 → F ′ → F → F ′′ → 0 be a short
exact sequence of sheaves ofOX-modules.
If F ′ and F ′′ are of finite type, so is F .
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Using the dictionary

Any finitely generated vector space does
not not possess a basis.

⇓
Any sheaf of modules of finite type on a
reduced scheme is locally free on a dense
open subset.

Ravi Vakil: “Important hard exercise” (13.7.K).
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The objective

Understand notions and statements of algebraic ge-
ometry as notions and statements of (intuitionistic)
commutative algebra internal to suitable toposes.

Further examples:
Characterizing quasicoherence internally
Understanding spreading of properties in a logical
way
Constructing the relative spectrum internally
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Praise for Mike Shulman
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The internal language of a topos supports

• first-order logic,

• higher-order logic (for instance quantification over subsets),

• dependent types, and

• unbounded quantification.

The first three items are standard. The fourth is due to Mike
Shulman. Combined, it’s possible to interpret “essentially all of
constructive mathematics” internal to a topos.

Restrictions persist for operations with a “set-theoretical flavor”
like building an infinite union of iterated powersets, for exam-
ple

⋃
n∈N Pn(N).



A curious property

Let X be a scheme. Internally to Sh(X),

any non-invertible element of OX is nilpotent.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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Quasicoherence

Let X be a scheme. Let E be an OX-module.

Then E is quasicoherent if and only if, internally to Sh(X),

E [f−1] is a ♦f -sheaf for any f : OX,
where ♦f ϕ :≡ (f invertible⇒ ϕ).

In particular: If E is quasicoherent, then internally

(f invertible⇒ s = 0) =⇒
∨

n≥0
f ns = 0

for any f : OX and s : E .
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The sheaf condition and the sheafification functor can be de-
scribed purely internally. An object M is separated with respect
to ♦ if and only if, from the internal point of view,

∀x, y : M. ♦(x = y)⇒ x = y.

It is a sheaf with respect to ♦, if furthermore

∀K ⊆ M. ♦(∃x : M. K = {x}) =⇒ ∃x : M. ♦(x ∈ K).

The second condition displayed on the previous slide is equiva-
lent to the separatedness condition. In the special case E = OX,
s = 1 it reduces to Mulvey’s “somewhat obscure formula”. We
now understand this condition in its proper context.



The ♦-translation

Let E♦ ↪→ E be a subtopos given by a local operator

♦ : ΩE → ΩE

♦.
Then

E♦ |= ϕ iff E |= ϕ♦,

where the translation ϕ 7→ ϕ♦ is given by:

(s = t)♦ :≡ ♦(s = t)

(ϕ ∧ ψ)♦ :≡ ♦(ϕ♦ ∧ ψ♦)

(ϕ ∨ ψ)♦ :≡ ♦(ϕ♦ ∨ ψ♦)

(ϕ⇒ ψ)♦ :≡ ♦(ϕ♦ ⇒ ψ♦)

(∀x : X. ϕ(x))♦ :≡ ♦(∀x : X. ϕ♦(x))

(∃x : X. ϕ(x))♦ :≡ ♦(∃x : X. ϕ♦(x))
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The ♦-translation

Let E♦ ↪→ E be a subtopos given by a local operator

♦ : ΩE → ΩE

♦.
Then

E♦ |= ϕ iff E |= ϕ♦.

Let X be a scheme. Depending on ♦, Sh(X) |= ♦ϕ means
that ϕ holds on . . .

. . . a dense open subset.

. . . a schematically dense open subset.

. . . a given open subset U.

. . . an open subset containing a given closed subset A.

. . . an open neighbourhood of a given point x ∈ X.

Can tackle the question “ϕ♦
?⇒ ♦ϕ” logically.

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 13 / 18



The ♦-translation is a generalization of the double negation transla-
tion, which is well-known in logic. The double negation transla-
tion has the following curious property: A formula ϕ admits a
classical proof if and only if the translated formula ϕ¬¬ admits
an intuitionistic proof.

The ♦-translation has been studied before (see for instance Aczel:
The Russell–Prawitz modality, and Escardó, Oliva: The Peirce trans-
lation and the double negation shift), but to the best of my know-
ledge, this application – expressing the internal language of
subtoposes in the internal language of the ambient topos – is
new.



For ease of exposition, assume that X is irreducible with generic
point ξ. Let ♦ :≡ ¬¬.

Then Sh(X) |= ♦ϕ means that ϕ holds on a dense open subset
of X, while Sh(X) |= ϕ♦ means that ϕ holds at the generic point
(taking stalks of all involved sheaves).

The question “does ϕ♦ imply ♦ϕ?” therefore means: Does ϕ
spread from the generic point to a dense open subset?

For the special case of the double negation translation, a general
answer to this purely logical question has long been known: This
holds if ϕ is a geometric formula (doesn’t contain⇒ and ∀).



Let F be a sheaf of modules on a locally ringed space X. Assume
that the stalk Fx at some point x ∈ X vanishes. Then in general it
does not follow that F vanishes on some open neighbourhood
of x.

This can be understood in logical terms: The statement that F
vanishes,

∀s : F . s = 0,

is not a geometric formula.

However, if F is additionally supposed to be of finite type, then
it does follow that F vanishes on an open neighbourhood. This
too can be understood in logical terms: If F is of finite type, then
internally there are generators s1, . . . , sn of F . Thus the vanishing
of F can be reformulated as

s1 = 0∧ · · · ∧ sn = 0,

and this condition is manifestly geometric.



The absolute spectrum

Let A be a commutative ring (in Set).

Is there a free local ring A→ A′ over A?

A

��

//
local
R

A′
local

local

99

No, if we restrict to Set.

Yes, if we allow a change of topos: Then A→ OSpec A is the
universal localization.
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Details on this point of view can be found in one of Peter Arndt’s
very nice answers on MathOverflow:

http://mathoverflow.net/a/14334/31233

http://mathoverflow.net/a/14334/31233


The absolute spectrum, internalized

Let A be a commutative ring in a topos E .

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space of the prime ideals of A

Define the frame of opens of Spec A to be the frame of
radical ideals in A.

This gives an internal description of Monique Hakim’s
spectrum functor from ringed toposes to locally ringed
toposes.
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Monique Hakim constructed in her thesis a very general spec-
trum functor, taking a ringed topos to a locally ringed one, using
explicit calculations with sites.

Using the internal language allows to reduce these calculations
to a minimum. One constructs the spectrum as the sheaf topos
over an internal locale and then uses the general theorem that
toposes over the base E are the same as toposes internal to E .

As a byproduct one obtains that Hakim’s spectrum is localic over
the base.



The relative spectrum

Let X be a scheme and OX
ϕ−→ A be a quasicoherent

algebra. Can we describe SpecX A, a scheme over X,
internally?

Desired universal property:

HomSch/X(T, SpecXA) ∼= HomAlg(OX)(A, µ∗OT)

for all X-schemes T
µ−→ X.

Solution: Define internally the frame of SpecXA to be the
frame of those radical ideals I ⊆ A such that

∀f :OX. ∀s :A. (f invertible in OX ⇒ s ∈ I) =⇒ fs ∈ I.

Its points are those prime filters G of A such that

∀f :OX. ϕ(f ) ∈ G =⇒ f invertible in OX.
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The stated condition on I is, under the assumption that A is
quasicoherent, equivalent to the condition that I is quasicoherent
(as an OX-module).

The relative spectrum is thus constructed as a certain sublocale
of the absolute one. The two constructions coincide if and only if
the dimension of the base scheme is ≤ 0.

If X is not a scheme or A is not quasicoherent, the construction
still gives rise to a locally ringed locale over X which satisfies the
universal property

HomLRL/X(T, SpecXA) ∼= HomAlg(OX)(A, µ∗OT)

for all locally ringed locales T
µ−→ X over X.



The relative spectrum, reformulated

Let B→ A be an algebra in topos.

Is there a free local and local-over-B ring A→ A′ over A?

B //

local

''

local ))

A

��

//
local
R

A′
local

local

99

Form limits in the category of locally ringed locales by
relocalizing the corresponding limit in ringed locales.
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One might wonder whether the absolute spectrum or the rela-
tive one is “more fundamental”. The absolute spectrum can be
expressed using the relative one, since

Spec A = SpecSpec Z A∼,

but the other way is not in general possible: The absolute spec-
trum is always (quasi-)compact, while the relative one is not in
general.



Understand notions and statements of algebraic
geometry as notions and statements of algebra

internal to appropriate toposes.
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Simplify proofs and gain conceptual understanding.
Understand relative geometry as absolute geometry.
Develop a synthetic account of scheme theory.
Contribute to constructive algebra.

http://tiny.cc/topos-notes
spreading of properties, general transfer principles, applications to constructive algebra,
quasicoherence, internal Cartier divisors, pullback along immersions = internal sheafi-
fication, scheme dimension = internal Krull dimension of OX, dense = not not, modal
operators, relative spectrum, other toposes, étale topology, group schemes = groups, . . .
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You should totally look up:

The Adventures of Sheafification Man



More on the internal language

More generally, for an object U of a topos E , we define the
meaning of

U |= ϕ (ϕ holds on U).

Writing “E |= ϕ” is then an abbreviation for “1 |= ϕ”,
where “1” denotes the terminal object of E .

In addition to soundness with respect to intuitionistic logic,
the internal language has the following two important prop-
erties:

Monotonicity: If p : V → U is an arbitrary morphism
and U |= ϕ, then also V |= ϕ.
Locality: If p : V → U is an epimorphism and V |= ϕ,
then also U |= ϕ.
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The rules of the Kripke–Joyal semantics
In the special case that E = Sh(X) is the topos of sheaves
on a topological space (or locale) X, the rules of the Kripke–
Joyal semantics look as follows. We tersely write “U |= ϕ”
instead of “Hom( , U) |= ϕ for open subsets U ⊆ X.

U |= f = g :F :⇐⇒ f |U = g|U ∈ F (U)

U |= ϕ ∧ ψ :⇐⇒ U |= ϕ and U |= ψ

U |= ϕ ∨ ψ :⇐⇒ U |= ϕ or U |= ψ

there exists a covering U =
⋃

i Ui s. th. for all i:
Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ :⇐⇒ for all open V ⊆ U: V |= ϕ implies V |= ψ

U |= ∀f :F . ϕ(f ) :⇐⇒ for all sections f ∈ F (V), V ⊆ U: V |= ϕ(f )
U |= ∃f :F . ϕ(f ) :⇐⇒ there exists a covering U =

⋃
i Ui s. th. for all i:

there exists fi ∈ F (Ui) s. th. Ui |= ϕ(fi)
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• The rules are not all arbitrary: Rather, they are very finely
concerted to make the crucial properties about the internal
language (monotonicity, locality, soundness with respect to
intuitinistic logic) true.

• IfF is an object of Sh(X), we write “f : F” instead of “f ∈ F”
to remind us that F is not really (externally) a set consisting
of elements, but that we only pretend this by using the
internal language.

• There are two further rules concerning the constants >
and ⊥ (truth resp. falsehood):

U |= > :⇐⇒ U = U (always fulfilled)

U |= ⊥ :⇐⇒ U = ∅

• Negation is defined as

¬ϕ :≡ (ϕ⇒ ⊥).



The alternate definition “U |= ϕ∨ψ :⇔ U |= ϕ or U |= ψ” would
not be local.



Translating internal statements I

Let X be a topological space (or locale) and let α : F → G
be a morphism of sheaves on X. Then:

Sh(X) |= pα is injectiveq

⇐⇒ Sh(X) |= ∀s :F . ∀t :F . α(s) = α(t)⇒ s = t

⇐⇒ for all open U ⊆ X, sections s ∈ F (U):
for all open V ⊆ U, sections t ∈ F (V):

for all open W ⊆ V:
αW(s|W) = αW(t|W) implies s|W = t|W

⇐⇒ for all open U ⊆ X, sections s, t ∈ F (U):
αU(s|U) = αU(t|U) implies s|U = t|U

⇐⇒ α is a monomorphism of sheaves
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Translating internal statements II

Let X be a topological space (or locale) and let α : F → G
be a morphism of sheaves on X. Then:

Sh(X) |= pα is surjectiveq

⇐⇒ Sh(X) |= ∀t : G. ∃s :F . α(s) = t

⇐⇒ for all open U ⊆ X, sections t ∈ G(U):
there exists an open covering U =

⋃
i Ui and

sections si ∈ F (Ui) such that:
α|Ui(si) = t|Ui

⇐⇒ α is an epimorphism of sheaves
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Translating internal statements III

Let X be a topological space (or locale) and let s, t ∈ F (X)
be global sections of a sheaf F on X. Then:

Sh(X) |= ¬¬(s = t)

⇐⇒ Sh(X) |= ((s = t)⇒ ⊥)⇒ ⊥

⇐⇒ for all open U ⊆ X such that
for all open V ⊆ U such that

s|V = t|V,
it holds that V = ∅,

it holds that U = ∅

⇐⇒ there exists a dense open set W ⊆ X such that s|W = t|W
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Spreading from points to neighbourhoods

All of the following lemmas have a short, sometimes trivial
proof. Let F be a sheaf of finite type on a ringed space X.
Let x ∈ X. Let A ⊆ X be a closed subset. Then:

1 Fx = 0 iff F|U = 0 for some open neighbourhood of x.

2 F|A = 0 iff F|U = 0 for some open set containing A.

3 Fx can be generated by n elements iff this is true on some
open neighbourhood of x.

4 HomOX(F ,G)x ∼= HomOX,x(Fx,Gx) if F is of finite
presentation around x.

5 F is torsion iff Fξ vanishes (assume X integral and F
quasicoherent).

6 F is torsion iff F|Ass(OX) vanishes (assume X locally
Noetherian and F quasicoherent).
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Statements 1 and 2 follow from one proof in the internal language,
applied to two different modal operators.

Similarly with statements 5 and 6.



The smallest dense sublocale

Let X be a reduced scheme satisfying a technical condition.
Let i : X¬¬ → X be the inclusion of the smallest dense
sublocale of X.

Then i∗i−1OX
∼= KX.

This is a highbrow way of saying “rational functions
are regular functions which are defined on a dense
open subset”.
Another reformulation is that KX is the sheafification
of OX with respect to the ¬¬-modality.
There is a generalization to nonreduced schemes.
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Transfer principles

Let M be an A-module. How do M and the sheaf M∼

on Spec A relate?

Observe that M∼ ∼= M[F−1] is the localization of M at
the generic prime filter and that M shares all first-order
properties with the constant sheaf of modules M. Therefore:

M∼ inherits all those properties of M which are
stable under localization.

Examples: finitely generated, free, flat, . . .

A converse holds as well, suitably formulated.

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 27 / 18



Applications in algebra

Let A be a commutative ring. The internal language
of Sh(Spec A) allows you to say “without loss of generality,
we may assume that A is local”, even constructively.

The kernel of any matrix over a principial
ideal domain is finitely generated.

⇓
The kernel of any matrix over a Prüfer do-
main is finitely generated.
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Hilbert’s program in algebra
There is a way to combine some of the powerful tools of classical ring theory with the ad-
vantages that constructive reasoning provides, for instance exhibiting explicit witnesses.
Namely we can devise a language in which we can usefully talk about prime ideals, but
which substitutes non-constructive arguments by constructive arguments “behind the
scenes”. The key idea is to substitute the phrase “for all prime ideals” (or equivalently
“for all prime filters”) by “for the generic prime filter”.

More specifically, simply interpret a given proof using prime filters in Sh(Spec A) and
let it refer to F ↪→ A.

Statement constructive substitution meaning

x ∈ p for all p. x 6∈ F . x is nilpotent.
x ∈ p for all p such that y ∈ p. x ∈ F ⇒ y ∈ F . x ∈

√
(y).

x is regular in all stalks Ap. x is regular in A[F−1]. x is regular in A.
The stalks Ap are reduced. A[F−1] is reduced. A is reduced.
The stalks Mp vanish. M[F−1] = 0. M = 0.
The stalks Mp are flat over Ap. M[F−1] is flat over A[F−1]. M is flat over A.
The maps Mp → Np are injective. M[F−1]→ N[F−1] is injective. M→ N is injective.
The maps Mp → Np are surjective. M[F−1]→ N[F−1] is surjective. M→ N is surjective.

This is related (in a few cases equivalent) to the dynamical methods in algebra explored by
Coquand, Coste, Lombardi, Roy, and others. Their approach is more versatile.

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 29 / 18



The big Zariski topos

Let X be a scheme. The big Zariski topos is the topos of
sheaves on Sch/X with respect to the Zariski topology.
From its point of view, . . .

. . . X-schemes look just like sets,

. . . Pn
X is given by the naive expression

{(x0, . . . , xn) | x1 6= 0∨ · · · ∨ xn 6= 0}/(rescaling),

. . . the cotangent “bundle” of an X-scheme T is

the set of maps ∆→ T,

where ∆ = {ε ∈ A1
X | ε2 = 0}.

. . . affinity is a “double dual condition”, and

. . . the étale topology is the coarsest topology ♦ s. th.

∀f : A1
X[T]. f is monic separable⇒ ♦(∃t : A1. f (t) = 0).
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• The functor of points of A1
X, that is

A1
X : (T/X) 7−→ OT(T),

looks like a local ring and indeed like a field from the inter-
nal point of view, in the sense that

∀f : A1
X.¬(f = 0)⇒ f invertible.

• Let A be a quasicoherent OX-algebra. Let E be the in-
duced A1

X-algebra given by E(T µ−→ X) := (µ∗A)(T). Then
the internal Hom set [E , A1

X]A1
X

of A1
X-algebra morphisms

is the functor of points of SpecX(A).

• Let µ : T → X be quasicompact and quasiseparated. Then µ
is affine iff, from the internal point of view, the map

T −→ [[T, A1
X]

[, A1
X]A1

X
, x 7−→ (x)

into the “double dual” is bijective.



• Describing the functor of points of the projective space was
suggested by Zhen Lin Low.

• The statement on the étale topology follows from Gavin
Wraith’s article Generic Galois theory of local rings.
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