

Synthetic algebraic geometry *a case study in applied topos theory*

&

the phenomenon of nongeometric sequents

Ingo Blechschmidt
University of Augsburg

103rd Peripatetic Seminar on Sheaves and Logic in Brno
April 7th, 2018

Approaches to algebraic geometry

Usual approach to algebraic geometry: **layer schemes above ordinary set theory** using either

- locally ringed spaces

set of prime ideals of $\mathbb{Z}[X, Y, Z]/(X^n + Y^n - Z^n) +$

Zariski topology + structure sheaf

- or Grothendieck's functor-of-points account, where a scheme is a functor $\text{Ring} \rightarrow \text{Set}$.

$$A \longmapsto \{(x, y, z) \in A^3 \mid x^n + y^n - z^n = 0\}$$

Synthetic approach: model schemes **directly as sets** in a certain nonclassical set theory.

$$\{(x, y, z) : (\mathbb{A}^1)^3 \mid x^n + y^n - z^n = 0\}$$

Toposes as mathematical universes

A **topos** is a category which has finite limits, is cartesian closed and has a subobject classifier, for instance

- **Set**, the category of sets;
- **Sh(X)**, the category of set-valued sheaves over a space X ;
- **Eff**, the effective topos (roughly: a category of data types).

Any topos supports an **internal language**, which is sound with respect to **intuitionistic reasoning**.

Toposes as mathematical universes

A **topos** is a category which has finite limits, is cartesian closed and has a subobject classifier, for instance

- **Set**, the category of sets;
- **Sh(X)**, the category of set-valued sheaves over a space X ;
- **Eff**, the effective topos (roughly: a category of data types).

Any topos supports an **internal language**, which is sound with respect to **intuitionistic reasoning**.

no $\varphi \vee \neg\varphi$, no $\neg\neg\varphi \Rightarrow \varphi$, no axiom of choice

Curious universes

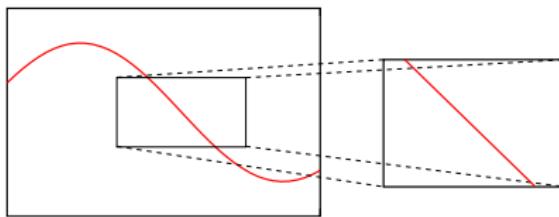
- $\text{Eff} \models$ “There are infinitely many prime numbers.” ✓
External meaning: There is a **Turing machine** producing arbitrarily many prime numbers.
- $\text{Eff} \models$ “Any Turing machine halts or doesn’t halt.” ✗
External meaning: There is a **halting oracle** which determines whether any given machine halts or doesn’t halt.
- $\text{Sh}(X) \models$ “Any cont. function with opposite signs has a zero.” ✗
External meaning: Zeros can locally be picked **continuously** in continuous families of continuous functions.

(see [video](#) for counterexample)

Synthetic differential geometry

The axiom of microaffinity

Let $\Delta = \{\varepsilon \in \mathbb{R} \mid \varepsilon^2 = 0\}$. For any function $f : \Delta \rightarrow \mathbb{R}$, there are unique numbers $a, b \in \mathbb{R}$ such that $f(\varepsilon) = a + b\varepsilon$ for all $\varepsilon \in \Delta$.



- The **derivative** of f as above at zero is b .
- Manifolds are **just sets**.
- A **tangent vector** to M is a map $\Delta \rightarrow M$.

Toposes provide models for this theory.

The big Zariski topos

Let S be a fixed base scheme.

Definition

The **big Zariski topos** $\text{Zar}(S)$ is the category $\text{Sh}(\text{Sch}/S)$. It consists of functors $(\text{Sch}/S)^{\text{op}} \rightarrow \text{Set}$ satisfying the gluing condition that

$$F(T) \rightarrow \prod_i F(U_i) \rightrightarrows \prod_{j,k} F(U_j \cap U_k)$$

is a limit diagram for any scheme $T = \bigcup_i U_i$ over S .

- For an S -scheme X , its functor of points $\underline{X} = \text{Hom}_S(\cdot, X)$ is an object of $\text{Zar}(S)$. It feels like **the set of points** of X .
- In particular, there is the ring object $\underline{\mathbb{A}}^1$ with $\underline{\mathbb{A}}^1(T) = \mathcal{O}_T(T)$.
- $\text{Zar}(S)$ classifies local \mathcal{O}_S -algebras which are local over \mathcal{O}_S .

Synthetic constructions

$$\mathbb{A}^n = (\underline{\mathbb{A}}^1)^n = \underline{\mathbb{A}}^1 \times \cdots \times \underline{\mathbb{A}}^1$$

$$\begin{aligned} \mathbb{P}^n &= \{(x_0, \dots, x_n) : (\underline{\mathbb{A}}^1)^{n+1} \mid x_0 \neq 0 \vee \cdots \vee x_n \neq 0\} / (\underline{\mathbb{A}}^1)^\times \\ &\cong \text{set of one-dimensional subspaces of } (\underline{\mathbb{A}}^1)^{n+1} \\ &\quad (\text{with } \mathcal{O}(-1) = (\ell)_{\ell : \mathbb{P}^n}, \mathcal{O}(1) = (\ell^\vee)_{\ell : \mathbb{P}^n}) \end{aligned}$$

$$\mathbf{Spec}(R) = \mathrm{Hom}_{\mathrm{Alg}(\underline{\mathbb{A}}^1)}(R, \underline{\mathbb{A}}^1) = \text{set of } \underline{\mathbb{A}}^1\text{-valued points of } R$$

$$\mathbf{TX} = X^\Delta, \text{ where } \Delta = \{\varepsilon : \underline{\mathbb{A}}^1 \mid \varepsilon^2 = 0\}$$

A subset $U \subseteq X$ is **qc-open** if and only if for any $x : X$ there exist $f_1, \dots, f_n : \underline{\mathbb{A}}^1$ such that $x \in U \iff \exists i. f_i \neq 0$.

A **synthetic affine scheme** is a set which is in bijection with $\mathrm{Spec}(R)$ for some synthetically quasicoherent $\underline{\mathbb{A}}^1$ -algebra R .

A **synthetic scheme** is a set which can be covered by finitely many qc-open synthetic affine schemes U_i such that the intersections $U_i \cap U_j$ can be covered by finitely many qc-open synthetic affine schemes.

Properties of the affine line

- $\underline{\mathbb{A}}^1$ is a local ring:

$$1 \neq 0 \quad x + y \text{ inv.} \implies x \text{ inv.} \vee y \text{ inv.}$$

- $\underline{\mathbb{A}}^1$ is a field:

$$\neg(x = 0) \iff x \text{ invertible} \quad [\text{Kock 1976}]$$

$$\neg(x \text{ invertible}) \iff x \text{ nilpotent}$$

- $\underline{\mathbb{A}}^1$ satisfies the axiom of microaffinity: Any map $f : \Delta \rightarrow \underline{\mathbb{A}}^1$ is of the form $f(\varepsilon) = a + b\varepsilon$ for unique values $a, b : \underline{\mathbb{A}}^1$, where $\Delta = \{\varepsilon : \underline{\mathbb{A}}^1 \mid \varepsilon^2 = 0\}$.
- Any function $\underline{\mathbb{A}}^1 \rightarrow \underline{\mathbb{A}}^1$ is a polynomial.
- $\underline{\mathbb{A}}^1$ is anonymously algebraically closed: Any monic polynomial does *not* have a zero.
- $\underline{\mathbb{A}}^1$ is of unbounded Krull dimension.

Synthetic quasicoherence

Recall $\mathrm{Spec}(R) = \mathrm{Hom}_{\mathrm{Alg}(\underline{\mathbb{A}}^1)}(R, \underline{\mathbb{A}}^1)$ and consider the statement

“the canonical map $\begin{array}{ccc} R & \longrightarrow & (\underline{\mathbb{A}}^1)^{\mathrm{Spec}(R)} \\ f & \longmapsto & (\alpha \mapsto \alpha(f)) \end{array}$ is bijective”.

- True for $R = \underline{\mathbb{A}}^1[X]/(X^2)$ (microaffinity).
- True for $R = \underline{\mathbb{A}}^1[X]$ (every function is a polynomial).
- True for **any** finitely presented $\underline{\mathbb{A}}^1$ -algebra R .

Any known property of $\underline{\mathbb{A}}^1$ follows from this
synthetic quasicoherence.

Example. Let $x : \underline{\mathbb{A}}^1$ such that $x \neq 0$. Set $R = \underline{\mathbb{A}}^1/(x)$.

Then $\mathrm{Spec}(R) = \emptyset$. Thus $(\underline{\mathbb{A}}^1)^{\mathrm{Spec}(R)}$ is a singleton. Hence $R = 0$. Therefore x is invertible.

Nongeometric sequents

Let \mathbb{T} be a **geometric theory** (rings, intervals, ...).

For a **geometric sequent** $\forall \vec{x}. (\varphi \Rightarrow \psi)$, the following are equivalent:

- 1 It is **provable** by \mathbb{T} .
- 2 It holds **for all models** of \mathbb{T} in all toposes.
- 3 It holds for the **generic model** of \mathbb{T} in its **classifying topos**.

- Additional **nongeometric sequents** may hold in a classifying topos, for instance “ \mathbb{A}^1 is synthetically quasicoherent” in $\text{Zar}(S)$.
- These are **\mathbb{T} -redundant**, but the converse is false.
[Bezem–Buchholtz–Coquand 2017; answering a question by Wraith possibly raised at PSSL 1.]
- Are they precisely the consequences of synthetic quasicoherence?
- Applications: synthetic algebraic geometry, generic freeness, ...

Further research

- Push synthetic algebraic geometry further: true cohomology, intersection theory, derived categories, ...
- What do the various subtoposes of $\text{Zar}(S)$ classify (étale, fppf, ph, $\neg\neg$, ...)? What about the crystalline topos?
- Understand quasicoherence.
- Find further applications of nongeometric sequents, for instance in constructive algebra.

Expository notes:
<https://www.ingo-blechschmidt.eu/>