

**Without loss of generality,  
any reduced ring is a field.**

*Interruptions welcome at any point.*

Ingo Blechschmidt  
University of Augsburg

Oberseminar Mathematische Logik  
Ludwig-Maximilians-Universität München  
April 11st, 2018

# Summary

- For any reduced ring  $A$ , there is a semantics with

$$A \models (\forall x. \neg(\exists y. xy = 1) \Rightarrow x = 0).$$

- This semantics is sound with respect to intuitionistic logic.
- It has uses in classical and constructive commutative algebra.

# Summary

- For any reduced ring  $A$ , there is a semantics with

$$A \models (\forall x. \neg(\exists y. xy = 1) \Rightarrow x = 0).$$

- This semantics is sound with respect to intuitionistic logic.
- It has uses in classical and constructive commutative algebra.

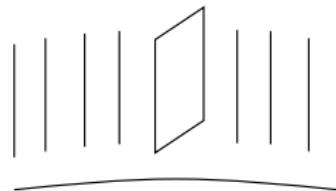
## A baby application

Let  $M$  be a surjective matrix with more rows than columns over a ring  $A$ . Then  $A = 0$ .

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$$

## Generic freeness

Generically, any finitely generated module over a reduced ring is free.



# Motivating the semantics

A ring is **local** iff  $1 \neq 0$  and  $x + y = 1$  implies that  $x$  is invertible or  $y$  is invertible.

**Examples:**  $k$ ,  $k[[X]]$ ,  $\mathbb{C}\{z\}$ ,  $\mathbb{Z}_{(p)}$

**Non-examples:**  $\mathbb{Z}$ ,  $k[X]$ ,  $\mathbb{Z}/(pq)$

**Locally**, any ring is local.

Let  $x + y = 1$  in a ring  $A$ . Then:

- The element  $x$  is invertible in  $A[x^{-1}]$ .
- The element  $y$  is invertible in  $A[y^{-1}]$ .

# The semantics

Let  $A$  be a fixed ring. Let " $A \models \varphi$ " be a shorthand for " $1 \models \varphi$ ".

|                                        |                                                                                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $f \models \top$                       | iff $\top$                                                                                                                                       |
| $f \models \perp$                      | iff $f$ is nilpotent                                                                                                                             |
| $f \models x = y$                      | iff $x = y \in A[f^{-1}]$                                                                                                                        |
| $f \models \varphi \wedge \psi$        | iff $f \models \varphi$ and $f \models \psi$                                                                                                     |
| $f \models \varphi \vee \psi$          | iff there exists a partition $f^n = fg_1 + \cdots + fg_m$ with,<br>for each $i$ , $fg_i \models \varphi$ or $fg_i \models \psi$                  |
| $f \models \varphi \Rightarrow \psi$   | iff for all $g \in A$ , $fg \models \varphi$ implies $fg \models \psi$                                                                           |
| $f \models \forall x: A^\sim. \varphi$ | iff for all $g \in A$ and $x_0 \in A[(fg)^{-1}]$ , $fg \models \varphi[x_0/x]$                                                                   |
| $f \models \exists x: A^\sim. \varphi$ | iff there exists a partition $f^n = fg_1 + \cdots + fg_m$ with,<br>for each $i$ , $g_i \models \varphi[x_0/x]$ for some $x_0 \in A[(fg_i)^{-1}]$ |

# The semantics

Let  $A$  be a fixed ring. Let " $A \models \varphi$ " be a shorthand for " $1 \models \varphi$ ".

$f \models x = y$  iff  $x = y \in A[f^{-1}]$

$f \models \varphi \wedge \psi$  iff  $f \models \varphi$  and  $f \models \psi$

$f \models \varphi \vee \psi$  iff there exists a partition  $f^n = fg_1 + \cdots + fg_m$  with,  
for each  $i$ ,  $fg_i \models \varphi$  or  $fg_i \models \psi$

## Monotonicity

If  $f \models \varphi$ , then also  $fg \models \varphi$ .

## Locality

If  $f^n = fg_1 + \cdots + fg_m$  and  $fg_i \models \varphi$  for all  $i$ , then also  $f \models \varphi$ .

## Soundness

If  $\varphi \vdash \psi$  and  $f \models \varphi$ , then  $f \models \psi$ .

## Forced properties

$A \models \lceil A^\sim \text{ is a local ring} \rceil$ .

# A baby application

Let  $M \in A^{n \times m}$  be a surjective matrix over a ring  $A$ . If  $n > m$ , then  $1 = 0 \in A$ .

*Classical proof.* Assume to the contrary that  $1 \neq 0 \in A$ . Pick a maximal ideal  $\mathfrak{m}$  of  $A$ . Then  $M$  is surjective as a matrix over the field  $A/\mathfrak{m}$ . This is in contradiction to basic linear algebra.  $\square$

*Constructive proof.* We verify that  $A \models \lceil M \text{ is surjective} \rceil$ . Since the claim admits an intuitionistic proof in the case that the ring is local, soundness implies that  $A \models 1 = 0$ . Thus  $1 = 0 \in A$ .  $\square$

PROCEEDINGS OF THE  
AMERICAN MATHEMATICAL SOCIETY  
Volume 103, Number 4, August 1988

## NONTRIVIAL USES OF TRIVIAL RINGS

FRED RICHMAN

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. Four theorems about commutative rings are proved with the aid

# Investigating the forcing model

Assuming the Boolean prime ideal theorem, any first-order formula “ $\forall \dots \forall. (\dots \Rightarrow \dots)$ ”, where the two subformulas may not contain “ $\Rightarrow$ ” and “ $\forall$ ”, holds for  $A^\sim$  iff it holds for all stalks  $A_p$ .

**Examples:** being local, reduced, an integral domain.

# Investigating the forcing model

Assuming the Boolean prime ideal theorem, any first-order formula “ $\forall \dots \forall. (\dots \Rightarrow \dots)$ ”, where the two subformulas may not contain “ $\Rightarrow$ ” and “ $\forall$ ”, holds for  $A^\sim$  iff it holds for all stalks  $A_p$ .

**Examples:** being local, reduced, an integral domain.

The forcing model has additional **unique properties**, e. g.

$$A \models \forall x : A^\sim. \neg(\lceil x \text{ inv.} \rceil) \implies \lceil x \text{ nilpotent} \rceil$$

which if  $A$  is reduced implies the **field condition**

$$A \models \forall x : A^\sim. \neg(\lceil x \text{ inv.} \rceil) \implies x = 0 \quad \text{and also}$$

$$A \models \forall x : A^\sim. \neg\neg(x = 0) \implies x = 0.$$

*Translation.* For any element  $x \in A$ , if  $f = 0$  is the only element such that  $x$  is invertible in  $A[f^{-1}]$ , then  $x = 0$ .

# Grothendieck's generic freeness

Let  $A$  be a reduced ring.

Let  $B$  be an  $A$ -algebra of finite type ( $\cong A[X_1, \dots, X_n]/\mathfrak{a}$ ).

Let  $M$  be a finitely generated  $B$ -module ( $\cong B^m/U$ ).

**Theorem.** If  $1 \neq 0$  in  $A$ , there exists  $f \neq 0$  in  $A$  such that

- 1  $B[f^{-1}]$  and  $M[f^{-1}]$  are free modules over  $A[f^{-1}]$ ,
- 2  $A[f^{-1}] \rightarrow B[f^{-1}]$  is of finite presentation, and
- 3  $M[f^{-1}]$  is finitely presented as a module over  $B[f^{-1}]$ .



$$A = k[X],$$

$$B = M = k[X, Y]/(XY)$$

# Grothendieck's generic freeness

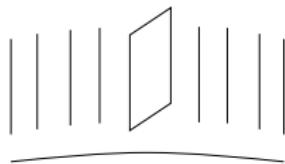
Let  $A$  be a reduced ring.

Let  $B$  be an  $A$ -algebra of finite type ( $\cong A[X_1, \dots, X_n]/\mathfrak{a}$ ).

Let  $M$  be a finitely generated  $B$ -module ( $\cong B^m/U$ ).

**Theorem.** If  $1 \neq 0$  in  $A$ , there exists  $f \neq 0$  in  $A$  such that

- 1  $B[f^{-1}]$  and  $M[f^{-1}]$  are free modules over  $A[f^{-1}]$ ,
- 2  $A[f^{-1}] \rightarrow B[f^{-1}]$  is of finite presentation, and
- 3  $M[f^{-1}]$  is finitely presented as a module over  $B[f^{-1}]$ .



- No generalization to unreduced rings.
- Implies the law of excluded middle.

$$\underbrace{\quad \quad \quad \quad \quad}_{A = k[X]}, \\ B = M = k[X, Y]/(XY)$$

# Grothendieck's generic freeness

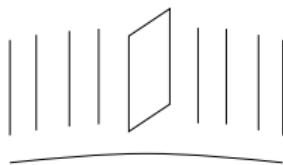
Let  $A$  be a reduced ring.

Let  $B$  be an  $A$ -algebra of finite type ( $\cong A[X_1, \dots, X_n]/\mathfrak{a}$ ).

Let  $M$  be a finitely generated  $B$ -module ( $\cong B^m/U$ ).

**Theorem.** If  $1 \neq 0$  in  $A$ , there exists  $f \neq 0$  in  $A$  such that

- 1  $B[f^{-1}]$  and  $M[f^{-1}]$  are free modules over  $A[f^{-1}]$ ,
- 2  $A[f^{-1}] \rightarrow B[f^{-1}]$  is of finite presentation, and
- 3  $M[f^{-1}]$  is finitely presented as a module over  $B[f^{-1}]$ .



$$A = k[X], \\ B = M = k[X, Y]/(XY)$$

- No generalization to unreduced rings.
- Implies the law of excluded middle.
- **Constructive restatement.**  
If zero is the only element  $f \in A$  such that  
1, 2, and 3, then  $1 = 0 \in A$ .

# A constructive proof

Let  $A$  be a reduced ring.

Let  $B$  be an  $A$ -algebra of finite type ( $\cong A[X_1, \dots, X_n]/\mathfrak{a}$ ).

Let  $M$  be a finitely generated  $B$ -module ( $\cong B^m/U$ ).

**Theorem.** If zero is the only element  $f \in A$  such that

- 1  $B[f^{-1}]$  and  $M[f^{-1}]$  are free modules over  $A[f^{-1}]$ ,
- 2  $A[f^{-1}] \rightarrow B[f^{-1}]$  is of finite presentation, and
- 3  $M[f^{-1}]$  is finitely presented as a module over  $B[f^{-1}]$ ,

then  $1 = 0 \in A$ .

*Constructive proof.* Observe that the theorem amounts to

$A \models \neg \text{It's not not the case that}$

- 1  $B^\sim$  and  $M^\sim$  are free modules over  $A^\sim$ ,
- 2  $A^\sim \rightarrow B^\sim$  is of finite presentation, and
- 3  $M^\sim$  is finitely presented as a module over  $B^\sim$ .

# A constructive proof

Let  $A$  be a reduced ring.

Let  $B$  be an  $A$ -algebra of finite type ( $\cong A[X_1, \dots, X_n]/\mathfrak{a}$ ).

Let  $M$  be a finitely generated  $B$ -module ( $\cong B^m/U$ ).

*Constructive proof.* Observe that the theorem amounts to

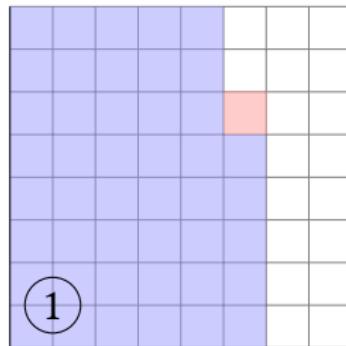
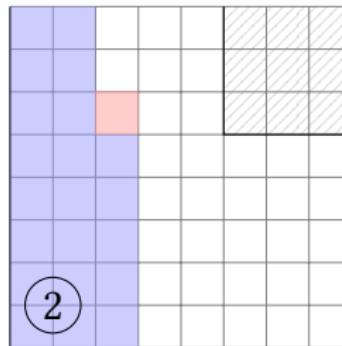
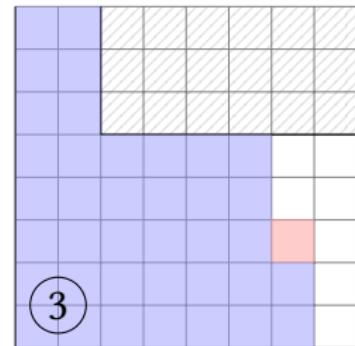
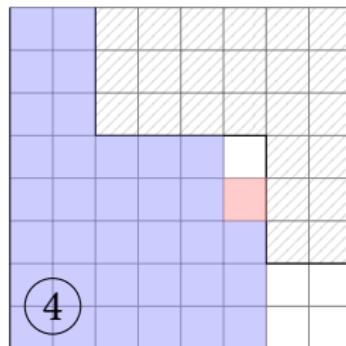
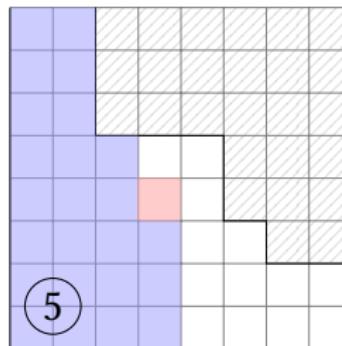
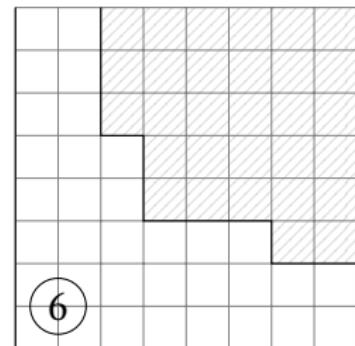
$A \models \neg \text{It's not not the case that}$

- 1  $B^\sim$  and  $M^\sim$  are free modules over  $A^\sim$ ,
- 2  $A^\sim \rightarrow B^\sim$  is of finite presentation, and
- 3  $M^\sim$  is finitely presented as a module over  $B^\sim$ .

Claims 2 and 3 follow from the fact that  $A^\sim$  is **anonymously Noetherian** (any ideal is **not not** finitely generated) which entails that  $A^\sim[X_1, \dots, X_n]$  is anonymously Noetherian.

Claim 1 follows from a careful rendition of the standard linear algebra proof, employing Dickson's lemma to ensure termination. □

Assume that  $B^\sim$  is generated by  $(x^i y^j)_{i,j \geq 0}$  as an  $A^\sim$ -module. It's **not not** the case that either some generator can be expressed as a linear combination of others with smaller index, or not.



# An explicit constructive proof

**Lemma.** Let  $A$  be a ring. Let  $M$  be an  $A$ -module with generating family  $(x_1, \dots, x_n)$ . Assume that the only element  $g \in A$  such that one of the  $x_i$  is an  $A[g^{-1}]$ -linear combination in  $A[g^{-1}]$  of the other generators is  $g = 0$ . Then  $M$  is free with  $(x_1, \dots, x_n)$  as a basis.

*Proof.* Let  $\sum_i a_i x_i = 0$ . Let  $i$  be arbitrary. In  $M[a_i^{-1}]$ , the generator  $x_i$  is a linear combination of the other generators. Thus  $a_i = 0$ . □

**Theorem.** Let  $A$  be a reduced ring. Let  $M$  be a finitely generated  $A$ -module. If zero is the only element  $f \in A$  such that  $M[f^{-1}]$  is finite free as an  $A[f^{-1}]$ -module, then  $1 = 0$  in  $A$ .

*Proof.* By induction on the length  $n$  of a generating family  $(x_1, \dots, x_n)$  of  $M$ .

We verify the assumption of the lemma. Thus let  $g \in A$  be given such that one of the  $x_i$  is an  $A[g^{-1}]$ -linear combination of the others in  $M[g^{-1}]$ . Therefore the  $A[g^{-1}]$ -module  $M[g^{-1}]$  can be generated by  $n - 1$  elements. By the induction hypothesis (applied to  $A[g^{-1}]$  and its module  $M[g^{-1}]$ ) it follows that  $A[g^{-1}] = 0$ . Therefore  $g = 0$ .

Thus  $M$  is free. We finish by using the assumption for  $f = 1$ . □

# An explicit constructive proof

**Theorem.** Let  $A$  be a reduced ring. Let  $B$  be a finitely generated  $A$ -algebra. If zero is the only element  $f \in A$  such that  $B[f^{-1}]$  is finitely presented as an  $A[f^{-1}]$ -algebra, then  $1 = 0$  in  $A$ .

*Proof.* Write  $B = A[X_1, \dots, X_n]/\mathfrak{a}$ . We describe only the case  $n = 0$ .

As a first step, we verify  $\mathfrak{a} = (0)$ . Let  $f \in \mathfrak{a}$ . Then  $B[f^{-1}] = 0$ . Thus  $f = 0$  by assumption.

We now use the assumption again, this time for  $f = 1$ . □