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Abstract

We describe how the internal language of certain toposes, the associated pe-
tit and gros Zariski toposes of a scheme, can be used to give simpler defini-
tions and more conceptual proofs of the basic notions and observations in
algebraic geometry.

The starting point is that, from the internal point of view, sheaves of rings
and sheaves of modules look just like plain rings and plain modules. In
this way, some concepts and statements of scheme theory can be reduced to
concepts and statements of intuitionistic linear algebra.

Furthermore, modal operators can be used to model phrases such as “on a
dense open subset it holds that” or “on an open neighbourhood of a given
point it holds that”. These operators define certain subtoposes; a generaliza-
tion of the double-negation translation is useful in order to understand the
internal universe of those subtoposes from the internal point of view of the
ambient topos.

A particularly interesting task is to internalize the construction of the relative
spectrum, which, given a quasicoherent sheaf of algebras on a scheme X,
yields a scheme over X. From the internal point of view, this construction
should simply reduce to an intuitionistically sensible variant of the ordinary
construction of the spectrum of a ring, but it turns out that this expectation
is too naive and that a refined approach is necessary.





Exploiting the internal language

A scheme is a locally ringed space (X,OX) which is locally
isomorphic to the spectrum of a commutative ring:

Spec A := {p ⊆ A | p is a prime ideal}

The topos Sh(X) is the petit Zariski topos of X.

externally internally to Sh(X)

sheaf of sets set/type
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map
sheaf of rings ring
sheaf of modules module

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 2 / 13



Exploiting the internal language

A scheme is a locally ringed space (X,OX) which is locally
isomorphic to the spectrum of a commutative ring:

Spec A := {p ⊆ A | p is a prime ideal}

The topos Sh(X) is the petit Zariski topos of X.

externally internally to Sh(X)

sheaf of sets set/type
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map
sheaf of rings ring
sheaf of modules module

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 2 / 13



Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

externally internally to Sh(X)

sheaf of sets set/type
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map

sheaf of rings ring
sheaf of modules module
sheaf of finite type finitely generated module
finite locally free sheaf finite free module
coherent sheaf coherent module
tensor product of sheaves tensor product of modules
rank function minimal number of generators
sheaf of rational functions total quotient ring of OX
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See the notes for more dictionary entries.

The simple definition of KX allows to give an internal account of
the basics of the theory of Cartier divisors, for instance giving an
easy description of the line bundle associated to a Cartier divisor.

https://github.com/iblech/internal-methods/raw/master/notes.pdf


Praise for Mike Shulman
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The internal language of a topos supports

• first-order logic,

• higher-order logic (for instance quantification over subsets),

• dependent types, and

• unbounded quantification.

The first three items are standard. The fourth is due to Mike
Shulman. Combined, it’s possible to interpret “essentially all of
constructive mathematics” internal to a topos.

Restrictions persist for operations with a “set-theoretical flavor”
like building an infinite union of iterated powersets, for exam-
ple

⋃
n∈N Pn(N).



Using the dictionary

Let 0 → M′ → M → M′′ → 0 be a short
exact sequence of modules. If M′ and M′′ are
finitely generated, so is M.

⇓
Let 0→ F ′ → F → F ′′ → 0 be a short exact
sequence of OX-modules. If F ′ and F ′′ are
of finite type, so is F .
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Using the dictionary

Any finitely generated vector space does
not not possess a basis.

⇓
Any sheaf of modules of finite type on a
reduced scheme is locally free on a dense
open subset.

Ravi Vakil: “Important hard exercise” (13.7.K).
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A curious property

Let X be a scheme. Internally to Sh(X),

any non-invertible element of OX is nilpotent.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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The ♦-translation

Let E♦ ↪→ E be a subtopos given by a local operator

♦ : ΩE → ΩE

♦.
Then

E♦ |= ϕ iff E |= ϕ♦,

where the translation ϕ 7→ ϕ♦ is given by:

(s = t)♦ :≡ ♦(s = t)

(ϕ ∧ ψ)♦ :≡ ♦(ϕ♦ ∧ ψ♦)

(ϕ ∨ ψ)♦ :≡ ♦(ϕ♦ ∨ ψ♦)

(ϕ⇒ ψ)♦ :≡ ♦(ϕ♦ ⇒ ψ♦)

(∀x : X. ϕ(x))♦ :≡ ♦(∀x : X. ϕ♦(x))

(∃x : X. ϕ(x))♦ :≡ ♦(∃x : X. ϕ♦(x))
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The ♦-translation

Let E♦ ↪→ E be a subtopos given by a local operator

♦ : ΩE → ΩE

♦.
Then

E♦ |= ϕ iff E |= ϕ♦.

Let X be a scheme. Depending on ♦, Sh(X) |= ♦ϕ means
that ϕ holds on . . .

. . . a dense open subset.

. . . a schematically dense open subset.

. . . a given open subset U.

. . . an open subset containing a given closed subset A.

. . . an open neighbourhood of a given point x ∈ X.

Can tackle the question “ϕ♦
?⇒ ♦ϕ” logically.
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The ♦-translation is a generalization of the double negation transla-
tion, which is well-known in logic. The double negation transla-
tion has the following curious property: A formula ϕ admits a
classical proof if and only if the translated formula ϕ¬¬ admits
an intuitionistic proof.

The ♦-translation has been studied before (see for instance Aczel:
The Russell–Prawitz modality, and Escardó, Oliva: The Peirce trans-
lation and the double negation shift), but to the best of my know-
ledge, this application – expressing the internal language of
subtoposes in the internal language of the ambient topos – is
new.



For ease of exposition, assume that X is irreducible with generic
point ξ. Let ♦ :≡ ¬¬.

Then Sh(X) |= ♦ϕ means that ϕ holds on a dense open subset
of X, while Sh(X) |= ϕ♦ means that ϕ holds at the generic point
(taking stalks of all involved sheaves).

The question “does ϕ♦ imply ♦ϕ?” therefore means: Does ϕ
spread from the generic point to a dense open subset?

For the special case of the double negation translation, a general
answer to this purely logical question has long been known: This
holds if ϕ is a geometric formula (doesn’t contain⇒ and ∀).



Let F be a sheaf of modules on a locally ringed space X. Assume
that the stalk Fx at some point x ∈ X vanishes. Then in general it
does not follow that F vanishes on some open neighbourhood
of x.

This can be understood in logical terms: The statement that F
vanishes,

∀s : F . s = 0,

is not a geometric formula.

However, if F is additionally supposed to be of finite type, then
it does follow that F vanishes on an open neighbourhood. This
too can be understood in logical terms: If F is of finite type, then
internally there are generators s1, . . . , sn of F . Thus the vanishing
of F can be reformulated as

s1 = 0∧ · · · ∧ sn = 0,

and this condition is manifestly geometric.



Quasicoherence

Let X be a scheme. Let E be an OX-module.

Then E is quasicoherent if and only if, internally to Sh(X),

E [f−1] is a ♦f -sheaf for any f : OX,
where ♦f ϕ :≡ (f invertible⇒ ϕ).

In particular: If E is quasicoherent, then internally

(f invertible⇒ s = 0) =⇒
∨

n≥0
f ns = 0

for any f : OX and s : E .
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The sheaf condition and the sheafification functor can be de-
scribed purely internally. An object M is separated with respect
to ♦ if and only if, from the internal point of view,

∀x, y : M. ♦(x = y)⇒ x = y.

It is a sheaf with respect to ♦, if furthermore

∀K ⊆ M. ♦(∃x : M. K = {x}) =⇒ ∃x : M. ♦(x ∈ K).

The second condition displayed on the previous slide is equiva-
lent to the separatedness condition. In the special case E = OX,
s = 1 it reduces to Mulvey’s “somewhat obscure formula”. We
now understand this condition in its proper context.



The absolute spectrum

Let A be a commutative ring (in Set).

Is there a free local ring A→ A′ over A?

A

��

//
local
R

A′
local

local

99

No, if we restrict to Set.

Yes, if we allow a change of topos: Then A→ OSpec A is the
universal localization.
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Details on this point of view can be found in one of Peter Arndt’s
very nice answers on MathOverflow:

http://mathoverflow.net/a/14334/31233

http://mathoverflow.net/a/14334/31233


The absolute spectrum, internalized

Let A be a commutative ring in a topos E .

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space of the prime ideals of A

Define the frame of opens of Spec A to be the frame of
radical ideals in A.

This gives an internal description of Monique Hakim’s
spectrum functor RT→ LRT.
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Monique Hakim constructed in her thesis a very general spec-
trum functor, taking a ringed topos to a locally ringed one, using
explicit calculations with sites.

Using the internal language allows to reduce these calculations
to a minimum. One constructs the spectrum as the sheaf topos
over an internal locale and then uses the general theorem that
toposes over the base E are the same as toposes internal to E .

As a byproduct one obtains that Hakim’s spectrum is localic over
the base.



The relative spectrum

Let X be a scheme and OX
ϕ−→ A be a quasicoherent

algebra. Can we describe SpecX A, a scheme over X,
internally?

Desired universal property:

HomSch/X(T, SpecXA) ∼= HomAlg(OX)(A, µ∗OT)

for all X-schemes T
µ−→ X.

Solution: Define internally the frame of SpecXA to be the
frame of those radical ideals I ⊆ A such that

∀f :OX. ∀s :A. (f invertible in OX ⇒ s ∈ I) =⇒ fs ∈ I.

Its points are those prime filters G of A such that

∀f :OX. ϕ(f ) ∈ G =⇒ f invertible in OX.
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The stated condition on I is, under the assumption that A is
quasicoherent, equivalent to the condition that I is quasicoherent
(as an OX-module).

The relative spectrum is thus constructed as a certain sublocale
of the absolute one. The two constructions coincide if and only if
the dimension of the base scheme is ≤ 0.

If X is not a scheme or A is not quasicoherent, the construction
still gives rise to a locally ringed locale over X which satisfies the
universal property

HomLRL/X(T, SpecXA) ∼= HomAlg(OX)(A, µ∗OT)

for all locally ringed locales T
µ−→ X over X.



The relative spectrum, reformulated

Let B→ A be an algebra in topos.

Is there a free local and local-over-B ring A→ A′ over A?

B //

local

''

local ))

A

��

//
local
R

A′
local

local

99

Form limits in the category of locally ringed locales by
relocalizing the corresponding limit in ringed locales.
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One might wonder whether the absolute spectrum or the rela-
tive one is “more fundamental”. The absolute spectrum can be
expressed using the relative one, since

Spec A = SpecSpec Z A∼,

but the other way is not in general possible: The absolute spec-
trum is always (quasi-)compact, while the relative one is not in
general.



Understand notions and statements of algebraic
geometry as notions and statements of algebra

internal to appropriate toposes.

Il
lu
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Simplify proofs and gain conceptual understanding.
Understand relative geometry as absolute geometry.
Develop a synthetic account of scheme theory.
Contribute to constructive algebra.

http://tiny.cc/topos-notes
spreading of properties, general transfer principles, applications to constructive algebra,
quasicoherence, internal Cartier divisors, pullback along immersions = internal sheafi-
fication, scheme dimension = internal Krull dimension of OX, dense = not not, modal
operators, relative spectrum, other toposes, étale topology, group schemes = groups, . . .
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You should totally look up:

The Adventures of Sheafification Man



Spreading from points to neighbourhoods

All of the following lemmas have a short, sometimes trivial
proof. Let F be a sheaf of finite type on a ringed space X.
Let x ∈ X. Let A ⊆ X be a closed subset. Then:

1 Fx = 0 iff F|U = 0 for some open neighbourhood of x.

2 F|A = 0 iff F|U = 0 for some open set containing A.

3 Fx can be generated by n elements iff this is true on some
open neighbourhood of x.

4 HomOX(F ,G)x ∼= HomOX,x(Fx,Gx) if F is of finite
presentation around x.

5 F is torsion iff Fξ vanishes (assume X integral and F
quasicoherent).

6 F is torsion iff F|Ass(OX) vanishes (assume X locally
Noetherian and F quasicoherent).
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Statements 1 and 2 follow from one proof in the internal language,
applied to two different modal operators.

Similarly with statements 5 and 6.



The smallest dense sublocale

Let X be a reduced scheme satisfying a technical condition.
Let i : X¬¬ → X be the inclusion of the smallest dense
sublocale of X.

Then i∗i−1OX
∼= KX.

This is a highbrow way of saying “rational functions
are regular functions which are defined on a dense
open subset”.
Another reformulation is that KX is the sheafification
of OX with respect to the ¬¬-modality.
There is a generalization to nonreduced schemes.
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Transfer principles

Let M be an A-module. How do M and the sheaf M∼

on Spec A relate?

Observe that M∼ ∼= M[F−1] is the localization of M at the
generic prime filter and that M shares all first-order
properties with the constant sheaf of modules M.
Therefore:

M∼ inherits all those properties of M which are
stable under localization.

Examples: finitely generated, free, flat, . . .

A converse holds as well, suitably formulated.
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Applications in algebra

Let A be a commutative ring. The internal language
of Sh(Spec A) allows you to say “without loss of generality,
we may assume that A is local”, even constructively.

The kernel of any matrix over a principial
ideal domain is finitely generated.

⇓
The kernel of any matrix over a Prüfer do-
main is finitely generated.

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 19 / 13



Hilbert’s program in algebra
There is a way to combine some of the powerful tools of classical ring theory with the ad-
vantages that constructive reasoning provides, for instance exhibiting explicit witnesses.
Namely we can devise a language in which we can usefully talk about prime ideals, but
which substitutes non-constructive arguments by constructive arguments “behind the
scenes”. The key idea is to substitute the phrase “for all prime ideals” (or equivalently
“for all prime filters”) by “for the generic prime filter”.

More specifically, simply interpret a given proof using prime filters in Sh(Spec A) and
let it refer to F ↪→ A.

Statement constructive substitution meaning

x ∈ p for all p. x 6∈ F . x is nilpotent.
x ∈ p for all p such that y ∈ p. x ∈ F ⇒ y ∈ F . x ∈

√
(y).

x is regular in all stalks Ap. x is regular in A[F−1]. x is regular in A.
The stalks Ap are reduced. A[F−1] is reduced. A is reduced.
The stalks Mp vanish. M[F−1] = 0. M = 0.
The stalks Mp are flat over Ap. M[F−1] is flat over A[F−1]. M is flat over A.
The maps Mp → Np are injective. M[F−1]→ N[F−1] is injective. M→ N is injective.
The maps Mp → Np are surjective. M[F−1]→ N[F−1] is surjective. M→ N is surjective.

This is related (in a few cases equivalent) to the dynamical methods in algebra explored by
Coquand, Coste, Lombardi, Roy, and others. Their approach applies more generally.
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The gros Zariski topos

Let X be a scheme. The gros Zariski topos is the topos of
sheaves on Sch/X with respect to the Zariski topology.
From its point of view, . . .

. . . X-schemes look just like sets,

. . . Pn
X is given by the naive expression

{(x0, . . . , xn) | x1 6= 0∨ · · · ∨ xn 6= 0}/(rescaling),

. . . the cotangent “bundle” of an X-scheme T is

the set of maps ∆→ T,

where ∆ = {ε ∈ A1
X | ε2 = 0}.

. . . affinity is a “double dual condition”, and

. . . the étale topology is the coarsest topology ♦ s. th.

∀f : A1
X[T]. f is monic separable⇒ ♦(∃t : A1. f (t) = 0).
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• The functor of points of A1
X, that is

A1
X : (T/X) 7−→ OT(T),

looks like a local ring and indeed like a field from the inter-
nal point of view, in the sense that

∀f : A1
X.¬(f = 0)⇒ f invertible.

• Let A be a quasicoherent OX-algebra. Let E be the in-
duced A1

X-algebra given by E(T µ−→ X) := (µ∗A)(T). Then
the internal Hom set [E , A1

X]A1
X

of A1
X-algebra morphisms

is the functor of points of SpecX(A).

• Let µ : T → X be quasicompact and quasiseparated. Then µ
is affine iff, from the internal point of view, the map

T −→ [[T, A1
X]

[, A1
X]A1

X
, x 7−→ (x)

into the “double dual” is bijective.



• Describing the functor of points of the projective space was
suggested by Zhen Lin Low.

• The statement on the étale topology follows from Gavin
Wraith’s article Generic Galois theory of local rings.



The internal language of a topos

Let E be a topos. Then we can define the meaning of

E |= ϕ (“ϕ holds in E”)

for formulas ϕ over E using the Kripke–Joyal semantics.

externally internally

object set/type
morphism map of sets
monomorphism injective map
epimorphism surjective map

If ϕ implies ψ intuitionistically, then E |= ϕ implies E |= ψ.
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More generally, for an object U of a topos E , we define the mean-
ing of

U |= ϕ (ϕ holds on U).

Writing “E |= ϕ” is then an abbreviation for “1 |= ϕ”, where “1”
denotes the terminal object of E .

In addition to soundness with respect to intuitionistic logic, the
internal language has the following two important properties:

• Monotonicity: If p : V → U is an arbitrary morphism
and U |= ϕ, then also V |= ϕ.

• Locality: If p : V → U is an epimorphism and V |= ϕ, then
also U |= ϕ.



In the special case that E = Sh(X) is the topos of sheaves on
a topological space (or locale) X, the rules of the Kripke–Joyal
semantics look as follows. We tersely write “U |= ϕ” instead
of “Hom( , U) |= ϕ for open subsets U ⊆ X.

U |= f = g :F :⇐⇒ f |U = g|U ∈ F (U)

U |= ϕ ∧ ψ :⇐⇒ U |= ϕ and U |= ψ

U |= ϕ ∨ ψ :⇐⇒ U |= ϕ or U |= ψ

there exists a covering U =
⋃

i Ui s. th. for all i:
Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ :⇐⇒ for all open V ⊆ U: V |= ϕ implies V |= ψ

U |= ∀f :F . ϕ(f ) :⇐⇒ for all sections f ∈ F (V), V ⊆ U: V |= ϕ(f )
U |= ∃f :F . ϕ(f ) :⇐⇒ there exists a covering U =

⋃
i Ui s. th. for all i:

there exists fi ∈ F (Ui) s. th. Ui |= ϕ(fi)



Translating internal statements I

Let X be a topological space (or locale) and let α : F → G
be a morphism of sheaves on X. Then:

Sh(X) |= pα is injectiveq

⇐⇒ Sh(X) |= ∀s :F . ∀t :F . α(s) = α(t)⇒ s = t

⇐⇒ for all open U ⊆ X, sections s ∈ F (U):
for all open V ⊆ U, sections t ∈ F (V):

for all open W ⊆ V:
αW(s|W) = αW(t|W) implies s|W = t|W

⇐⇒ for all open U ⊆ X, sections s, t ∈ F (U):
αU(s|U) = αU(t|U) implies s|U = t|U

⇐⇒ α is a monomorphism of sheaves
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Translating internal statements II

Let X be a topological space (or locale) and let α : F → G
be a morphism of sheaves on X. Then:

Sh(X) |= pα is surjectiveq

⇐⇒ Sh(X) |= ∀t : G. ∃s :F . α(s) = t

⇐⇒ for all open U ⊆ X, sections t ∈ G(U):
there exists an open covering U =

⋃
i Ui and

sections si ∈ F (Ui) such that:
α|Ui(si) = t|Ui

⇐⇒ α is an epimorphism of sheaves

Using the internal language of toposes in algebraic geometry Ingo Blechschmidt 24 / 13



Translating internal statements III

Let X be a topological space (or locale) and let s, t ∈ F (X)
be global sections of a sheaf F on X. Then:

Sh(X) |= ¬¬(s = t)

⇐⇒ Sh(X) |= ((s = t)⇒ ⊥)⇒ ⊥

⇐⇒ for all open U ⊆ X such that
for all open V ⊆ U such that

s|V = t|V,
it holds that V = ∅,

it holds that U = ∅

⇐⇒ there exists a dense open set W ⊆ X such that s|W = t|W
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