



# Exploring mathematical objects from custom-tailored mathematical universes

– *an invitation* –

Ingo Blechschmidt  
University of Augsburg /  
Max Planck Institute for Mathematics in the Sciences, Leipzig

Third international conference of the  
*Italian Network for the Philosophy of Mathematics*  
in Mussomeli

May 26th, 2018

# A glimpse of the toposophic landscape

Set



The usual laws  
of logic hold.

# A glimpse of the toposophic landscape

Set



The usual laws  
of logic hold.

Sh X



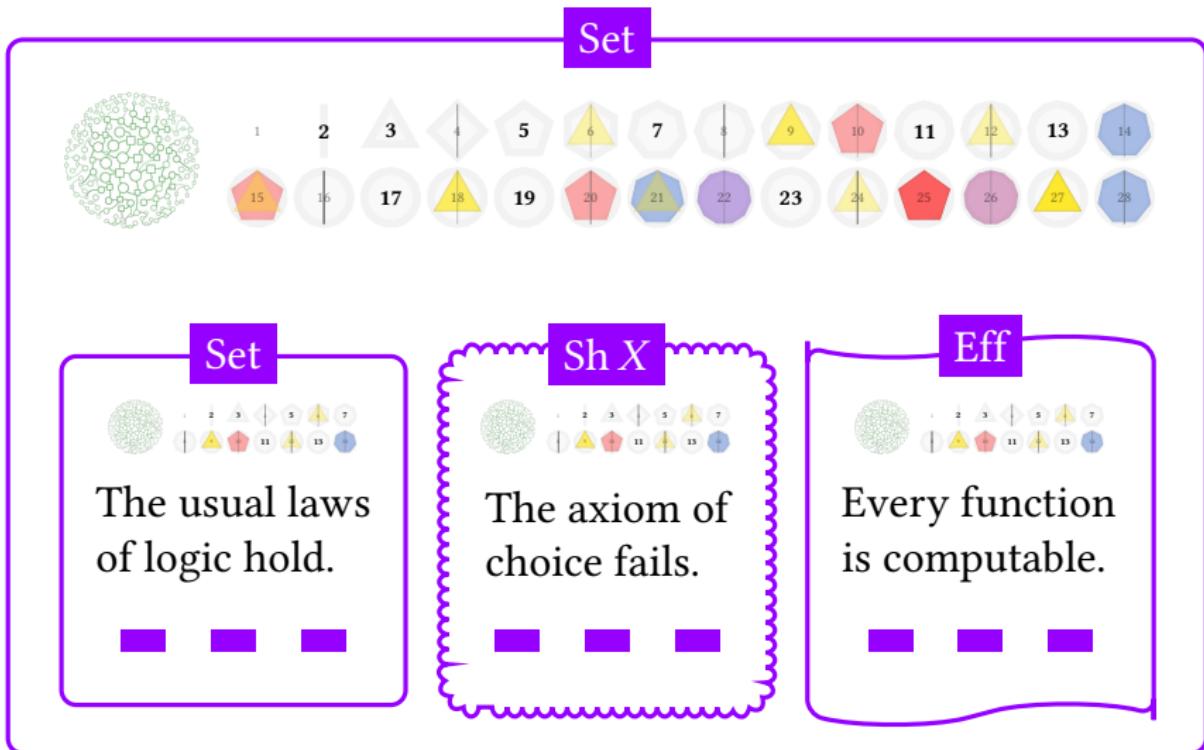
The axiom of  
choice fails.

Eff



Every function  
is computable.

# A glimpse of the toposophic landscape



# The internal universe of a topos

For any topos  $\mathcal{E}$  and any statement  $\varphi$ , we define the meaning of

$\mathcal{E} \models \varphi$  (“ $\varphi$  holds in the internal universe of  $\mathcal{E}$ ”)

using the **Kripke–Joyal semantics**.

Set  $\models \varphi$   
“ $\varphi$  holds in the  
usual sense.”

Sh( $X$ )  $\models \varphi$   
“ $\varphi$  holds  
continuously.”

Eff  $\models \varphi$   
“ $\varphi$  holds  
computably.”

# The internal universe of a topos

For any topos  $\mathcal{E}$  and any statement  $\varphi$ , we define the meaning of

$\mathcal{E} \models \varphi$  (“ $\varphi$  holds in the internal universe of  $\mathcal{E}$ ”)

using the **Kripke–Joyal semantics**.

Set  $\models \varphi$   
“ $\varphi$  holds in the  
usual sense.”

Sh( $X$ )  $\models \varphi$   
“ $\varphi$  holds  
continuously.”

Eff  $\models \varphi$   
“ $\varphi$  holds  
computably.”

Any topos supports **mathematical reasoning**:

If  $\mathcal{E} \models \varphi$  and if  $\varphi \vdash \psi$  intuitionistically, then  $\mathcal{E} \models \psi$ .

# The internal universe of a topos

For any topos  $\mathcal{E}$  and any statement  $\varphi$ , we define the meaning of

$\mathcal{E} \models \varphi$  (“ $\varphi$  holds in the internal universe of  $\mathcal{E}$ ”)

using the **Kripke–Joyal semantics**.

Set  $\models \varphi$   
 “ $\varphi$  holds in the  
 usual sense.”

Sh( $X$ )  $\models \varphi$   
 “ $\varphi$  holds  
 continuously.”

Eff  $\models \varphi$   
 “ $\varphi$  holds  
 computably.”

Any topos supports **mathematical reasoning**:

If  $\mathcal{E} \models \varphi$  and if  $\varphi \vdash \psi$  intuitionistically, then  $\mathcal{E} \models \psi$ .

no  $\varphi \vee \neg\varphi$ , no  $\neg\neg\varphi \Rightarrow \varphi$ , no axiom of choice

# First steps in alternate universes

- $\text{Eff} \models \text{"Any number is prime or is not prime."}$  ✓  
Meaning: There is a **Turing machine** which determines of any given number whether it is prime or not.
- $\text{Eff} \models \text{"There are infinitely many prime numbers."}$  ✓  
Meaning: There is a **Turing machine** producing arbitrarily many primes.
- $\text{Eff} \models \text{"Any function } \mathbb{N} \rightarrow \mathbb{N} \text{ is the zero function or not."}$  ✗  
Meaning: There is a **Turing machine** which, given a Turing machine computing a function  $f : \mathbb{N} \rightarrow \mathbb{N}$ , determines whether  $f$  is zero or not.
- $\text{Eff} \models \text{"Any function } \mathbb{N} \rightarrow \mathbb{N} \text{ is computable."}$  ✓
- $\text{Sh}(X) \models \text{"Any cont. function with opposite signs has a zero."}$  ✗  
Meaning: Zeros can locally be picked **continuously** in continuous families of continuous functions. (video for counterexample)

# Applications in commutative algebra

Let  $A$  be a reduced commutative ring.

**For instance:**  $\mathbb{Z}$ ,  $\mathbb{Z}[X]$ ,  $\mathbb{Z}[X, Y, Z]/(X^n + Y^n - Z^n)$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$

The **little Zariski topos** of  $A$  contains a **mirror image** of  $A$ :  $A^\sim$ .

1  $A^\sim$  is always a **field**.

2  $A^\sim$  is still **very close** to  $A$ .

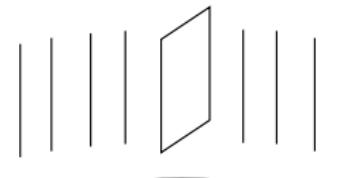
## A baby application

Let  $M$  be a surjective matrix with more rows than columns over a ring  $A$ . Then  $A = 0$ .

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$$

## Generic freeness

Generically, any finitely generated module over a reduced ring is free.



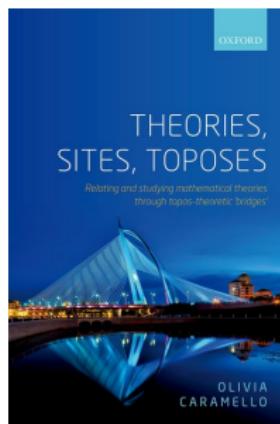
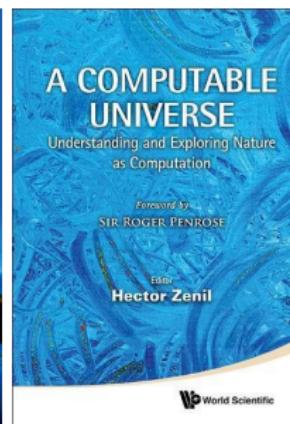
# The little Zariski topos in more detail

Recall  $A[f^{-1}] = \left\{ \frac{u}{f^n} \mid u \in A, n \in \mathbb{N} \right\}$ .

- $\text{Sh}(\text{Spec}(A)) \models \text{“For all } x \in A^\sim, \dots \text{”}$   
Meaning: For all  $f \in A$  and all  $x \in A[f^{-1}]$ , ...
- $\text{Sh}(\text{Spec}(A)) \models \text{“There is } x \in A^\sim \text{ such that } \dots \text{”}$   
Meaning: There is a partition of unity,  $1 = f_1 + \dots + f_n \in A$ , such that for each  $i$ , there exists  $x_i \in A[f_i^{-1}]$  with ...
- $\text{Sh}(\text{Spec}(A)) \models \text{“}\varphi \text{ implies } \psi\text{”}$   
Meaning: For all  $f \in A$ , if  $\varphi$  on stage  $f$ , then  $\psi$  on stage  $f$ .

# Topos theory ...

- enriches the platonism debate,
- uncovers further relations between objects,
- allows to study objects from a different point of view,
- has applications in mathematical practice.



Spiel und Spaß mit der internen Welt  
des kleinen Zariski-Topos

Ingo Blechschmidt  
19. Dezember 2013



$R \models x = y : \mathcal{O}$  : Wenn für die gegebenen Elemente  $x, y \in R$  gilt  $x = y$ .  
 $R \models 1 = 1 : \mathcal{O}$  : (Das ist stets erfüllt.)  
 $R \models 1 = 0 : \mathcal{O}$  : (Das ist genau in Nullstellens erfüllt.)  
 $R \models 0 = 0 : \mathcal{O}$  : (Das ist stets erfüllt.)  
 $R \models 0 = 1 : \mathcal{O}$  : (Das ist nie erfüllt.)  
 $R \models 0 \neq 1 : \mathcal{O}$  : (Es gibt eine Zeichnung  $\sum n_i = 1 \in R$  sodass für alle  $i$  jeweils  $R[n_i] \models 0 = 1$  und  $R[n_i] \models 0 \neq 1$ .)  
 $R \models \phi \rightarrow \psi : \mathcal{O}$  : (Für jedes  $x \in R$  gilt:  $\text{Ann}(R[x]) \models \phi$  klappt  $R[x] \models \psi$ .)  
 $R \models \psi : \mathcal{O}$  : (Für jedes  $x \in R$  gilt:  $\text{Ann}(R[x]) \models \psi$ .)  
 $R \models \exists x : \mathcal{O}, \phi : \text{Wenn } \exists x \in R \text{ und jedes } x \in R \text{ gilt: } R[x] \models \phi(x)$ .  
 $R \models \forall x : \mathcal{O}, \phi : \text{Es gibt eine Zeichnung } \sum n_i = 1 \in R \text{ und } \text{Elemente } x_i \in R[n_i] \text{ sodass für alle } i: R[n_i] \models \phi(x_i)$ .

Using the internal language of toposes  
in algebraic geometry

Disertation  
zur Erlangung des akademischen Grades

Dr. rer. nat.

eingereicht an der

Mathematisch-Naturwissenschaftliche-Technischen Fakultät  
der Universität Augsburg

von

Ingo Blechschmidt



June 2017