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Abstract

We describe how the internal language of certain toposes, the associated small and
big Zariski toposes of a scheme, can be used to give simpler definitions and more
conceptual proofs of the basic notions and observations in algebraic geometry.

The starting point is that, from the internal point of view, sheaves of rings and
sheaves of modules look just like plain rings and plain modules. In this way, some
concepts and statements of scheme theory can be reduced to concepts and state-
ments of intuitionistic linear algebra.

Furthermore, modal operators can be used to model phrases such as “on a dense
open subset it holds that” or “on an open neighbourhood of a given point it holds
that”. These operators define certain subtoposes; a generalization of the double-
negation translation is useful in order to understand the internal universe of those
subtoposes from the internal point of view of the ambient topos.

A particularly interesting task is to internalise the construction of the relative
spectrum, which, given a quasicoherent sheaf of algebras on a scheme X, yields
a scheme over X. From the internal point of view, this construction should simply
reduce to an intuitionistically sensible variant of the ordinary construction of the
spectrum of a ring, but it turns out that this expectation is too naive and that a
refined approach is necessary.

We also discuss how the little Zariski topos can be described using the internal
language of the big Zariski topos, and vice versa; here too there is a small surprise.



What is a scheme?

® A manifold is a space which is locally isomorphic to
some open subset of some R".

m A scheme is a space which is locally isomorphic to the
spectrum of some (commutative) ring;:

Spec A := {p C A|p is a prime ideal }

m By space we mean: topological space X equipped with a
local sheaf Oy of rings.

won w§,
b
toden

® . D

it W
a manifold Mumford’s treasure map of Spec Z[X]

Using the internal language of toposes in algebraic geometry 1/27



A sheaf of rings on a topological space X is a ring object in Sh(X), the
category of set-valued sheaves on X.

A sheaf Ox of rings is local if and only if all the stalks Ox  are local
rings. Why not demand that the sets of sections Ox(U) are local rings?
This choice has a geometric meaning, but can also be motivated from
a logical point of view: A sheaf of rings is local if and only if, from the
point of view of the internal language of Sh(X), it is a local ring.

Think of Oyx as the sheaf of “number-valued functions” on X. In
algebraic geometry, this structure sheaf is a crucial part of the data:
Wildly different schemes can have the same underlying topological
space.



Motivating the spectrum

Let A be a commutative ring (in Set).

Is there a free local ring A — A’ over A?

local

-
7
-
-
»
- s
- Ao

/ e

A

local

No, if we restrict to Set.

Yes, if we allow a change of topos: Then A — Ospec 4 is the
universal localization.
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Details on this point of view can be found in one of Peter Arndt’s very
nice answers on MathOverflow:

http://mathoverflow.net/a/14334/31233


http://mathoverflow.net/a/14334/31233

What is a topos?

Formal definition

A topos is a category which has finite limits, is cartesian closed
and has a subobject classifier.

Motto

A topos is a category which is sufficiently rich to support an
internal language.

Examples

m Set: category of sets

m Sh(X): category of set-valued sheaves on a space X
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While technically correct, the formal definition is actually misleading
in a sense: A topos has lots of other vital structure, which is crucial
for a rounded understanding, but is not listed in the definition (which
is trimmed for minimality).

A more comprehensive definition is: A topos is a locally cartesian
closed, finitely complete and cocomplete Heyting category which is
exact, extensive and has a subobject classifier.

Check out an article by Tom Leinster for a leisurely introduction to
topos theory.


https://ncatlab.org/publications/published/Leinster2011

What is the internal language?

The internal language of a topos £ allows to

construct objects and morphisms of the topos,
formulate statements about them and

prove such statements

in a naive element-based language:

externally internally to £

object of £ set/type
morphism in &€  map of sets
monomorphism injective map
epimorphism surjective map
group object group
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define
UE ¢ (“pholdson U)

for open subsets U C X and formulas ¢. Write “Sh(X) = ¢” to
mean X = .
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define
UE ¢ (“pholdson U)
for open subsets U C X and formulas ¢. Write “Sh(X) = ¢” to
mean X = .
Uk f=g:F == flu=glve FU)
UE oAy = UEgand U1
UkeVy = l=pertfFE7p
there exists a covering U = | J; U s. th. for all i:
UEporU vy
UEp=1 <= forallopen VC U: V= ¢ implies V = ¢
UE Vf: F.o(f) == for all sections f€ F(V),VC U V E o(f)
U= 3f: F. o(f) == there exists a covering U = |J, U; s. th. for all i:
there exists f; € F(U;) s.th. U; = ¢(f;)
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Special case: The language of Set is the usual mathematical language.

Actually, the objects of £ feel more like types instead of sets: For instance, there is no
global membership relation €. Rather, for each object A of £, there is a relation €4 :
A X P(A) — Q, where P(A) is the power object of A and € is the object of truth
values of £ (can be understood as the power object of a terminal object).

Compare with the embedding theorem for abelian categories: There, an explicit embed-
ding into a category of modules is constructed. Here, we only change perspective and
talk about the same objects and morphisms.

There exists a weaker variant of the internal language which works in abelian cate-
gories. By using it, one can even pretend that the objects are abelian groups (instead
of modules), and when constructing morphisms by appealing to the axiom of unique
choice (which is a theorem), one doesn’t even have to check linearity. The proof that
this approach works uses only categorical logic.

For expositions of the internal language, see Chapters D1 to D4 of the Elephant, Chap-
ter VI of Moerdijk and Mac Lane’s book, or Chapter 13 of these lecture notes by Thomas
Streicher.


http://www.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf

e The internal language of a sheaf topos of a Ty-space is classical
(that is, verifies the principle of excluded middle) if and only if
the space is discrete. That’s a not particularly interesting special
case.

e See Section 2.4 of these notes for remarks on how to appreciate
intuitionistic logic.


https://rawgit.com/iblech/internal-methods/master/notes.pdf

e The rules are called Kripke—Joyal semantics and can be formu-
lated over any topos (not just sheaf topoi). They are not all
arbitrary: Rather, they are very finely concerted to make the
crucial properties about the internal language (see next slide)
true.

e If F is an object of Sh(X), we write “f: F” instead of “f € F~
to remind us that F is not really (externally) a set consisting of
elements, but that we only pretend this by using the internal
language.

e There are two further rules concerning the constants T and L
(truth resp. falsehood):

UET <= U= Ul(always fulfiled)
ULl = U=0
e Negation is defined as ~¢ := (¢ = L1).

o The alternate definition “U = ¢V 1= U= ¢ or U = ¢” would
not be local (cf. next slide).



e Let o : F — G be a morphism of sheaves on X. Then:
X |= T is injective
= XEVs,t: F.as) =a(t) =s=t
<= for all open U C X, sections s, t € F(U):
Uka(s)=a(t)=s=t

<= for all open U C X, sections s, t € F(U):
for all open VC U:

ay(sly) = ay(tly) implies s|y = t|y
<= for all open U C X, sections s, t € F(U):
ay(slv) = ay(tly) implies s|y = ty

<= « is a monomorphism of sheaves

e The corner quotes “... " indicate that translation into formal
language is left to the reader.



e Similarly, we have (exercise, use the rules!):
X = T« is surjective
= XEVs:G.3t: F.at)=s

<= «v is an epimorphism of sheaves



e One can simplify the rules for often-occuring special cases:

UEVs:F.Vt:G.p(s,t) <= forallopen VC [,
sections s € F(V), t € G(V):

VE (s 1)
UEVs:F.o(s) = 1¢(s) <= forallopen VC U, sections s € F(V):

V = ¢(s) implies V = v (s)
Uk 3ls: F.o(s) <= forallopen VC U,

there is exactly one section s € F (V) with:

VE ()



e One can extend the language to allow for unbounded quantifi-
cation (VA vs. Va € A), by Shulman’s stack semantics. This is
needed to formulate universal properties internal to Sh(X), for
instance.

e One can further extend the language to be able to talk about
locally internal categories over Sh(X) (in the sense of Penon, see
for instance the appendix of Johnstone’s first topos theory book):
Then one can do category theory internal to Sh(X) using the
internal language.

This specific approach is, as far as I am aware, original work.
But of course, internal category theory has been done for a
long time, see for instance the Elephant and also Chapman and
Rowbottom’s Relative Category Theory and Geometric Morphisms:
A Logical Approach.



The internal language of Sh(X)

Crucial property: Locality
IfU=J,U,then U= ¢iff U |= ¢ for all i.

Crucial property: Soundness
If U =  and @ implies ¢ constructively, then U |= 1.
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The internal language of Sh(X)

Crucial property: Locality
IfU=J,U,then U= ¢iff U |= ¢ for all i.

Crucial property: Soundness
If U = ¢ and @ implies 1) constructively, then U |= 1.

no ¢ V =, no -—p = ¢, no AxC
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The internal language of Sh(X)

Crucial property: Locality
IfU=J,U,then U= ¢iff U |= ¢ for all i.

Crucial property: Soundness
If U = ¢ and @ implies 1) constructively, then U |= 1.

no ¢ V =, no -—p = ¢, no AxC

A first glance at the constructive nature

mUEf=0 iff fly =0 € F(U).
m Ul ——(f=0) iff f= 0 on a dense open subset of U.
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Why is constructive mathematics interesting?

e The internal logic of most toposes is constructive.

e From a constructive proof of a statement, it’s always possible to mechanically extract
an algorithm witnessing its truth. For example: A proof of the infinitude of primes gives
rise to an algorithm which actually computes infinitely many primes (outputting one at
a time, never stopping).

e By the celebrated Curry-Howard correspondence, constructive truth of a formula is
equivalent to the existence of a program of a certain type associated to the formula.

e In constructive mathematics, one can experiment with (and draw useful conclusions
also holding in a usual sense) anti-classical dream axioms, for instance the one of syn-
thetic differential geometry:

All functions R — R are smooth.
e Constructive accounts of classical theories are sometimes more elegant or point out

some minor but interesting points which are not appreciated by a classical perspective.

e The philosophical question on the meaning of truth is easier to tackle in constructive
mathematics.



1.

Three rumours about constructive
mathematics

There is a false rumour about constructive mathematics, namely that the term contra-

diction is generally forbidden. This is not the case, one has to distinguish between

— atrue proof by contradiction: “Assume ¢ were false. Then ..., contradiction.
So ¢ is in fact true”

which constructively is only a proof of the weaker statement =—¢, and

— aproof of a negated formula: “Assume 1) were true. Then ..., contradiction.
So = holds”

which is a perfectly fine proof of - in constructive mathematics.

There is a similar rumour that constructive mathematicians deny the law of excluded
middle. In fact, one can constructively prove that there is no counterexample to the law:
For any formula ¢, it holds that =—(¢p V —¢).

In constructive mathematics, one merely doesn’t use the law of excluded middle. (Only
in concrete models, for example as provided by the internal universe of the sheaf
topos on a non-discrete topological space, the law of excluded middle will actually be
refutable.)



3. There is one last false rumour about constructive mathematics: Namely that most of
mathematics breaks down in a constructive setting. This is only true if interpreted
naively: Often, already very small changes to the definitions and statements (which
are classically simply equivalent reformulations) suffice to make them constructively
acceptable.

In other cases, adding an additional hypothesis, which is classically always satisfied,
is necessary (and interesting). Here is an example: In constructive mathematics, one
can not show that any inhabited subset of the natural numbers possesses a minimal
element. [One can also not show the negation - recall the previous false rumour.] But
one can show (quite easily, by induction) that any inhabited and detachable subset of
the natural numbers possesses a minimal element. A subset U C N is detachable iff for
any number n € N, it holds that n € Uor n ¢ U.

This has a computational interpretation: Given an arbitrary inhabited subset U C N,
one cannot algorithmically find its minimal element. But it is possible if one has an
algorithmic test of membership for U.

References about constructive mathematics include:

e Bridges. Constructive Mathematics.
e van Dalen. Intuitionistic logic.

e Troelstra and van Dalen. Constructivism in Mathematics: An Introduction.

Andrej Bauer’s blog is also very informative.


http://math.andrej.com/category/constructive-math/

The little Zariski topos

Definition

The little Zariski topos of a scheme X is the category Sh(X)
of set-valued sheaves on X.

Basic look and feel
m Internally, the structure sheaf Oy looks like

an ordinary ring.
m Internally, a sheaf of Ox-modules looks like

an ordinary module on that ring.
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Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

externally internally to Sh(X)
sheaf of sets set/type
morphism of sheaves map of sets
monomorphism injective map
epimorphism surjective map
sheaf of rings ring

sheaf of modules module

sheaf of finite type

finite locally free sheaf
tensor product of sheaves
sheaf of Kahler differentials
sheaf of rational functions
dimension of X

finitely generated module
finite free module

tensor product of modules
module of Kahler differentials
total quotient ring of Ox
Krull dimension of Oy

Using the internal language of toposes in algebraic geometry

8/27



Building a dictionary

Understand notions of algebraic geometry as
notions of algebra internal to Sh(X).

MISCONCEPTIONS ABOUT Ky

by Steven L. KLEIMAN

There are three common misconceptions about the sheaf K of mero-

morphic functions on a ringed space X: (1) that Ky can be defined as the
sheaf associated tothe presheaf of total fraction rings,

® Ut T (U, Oxda»

see [EGATV,, 20.1.3, p. 227] and [1, (3.2), p. 137]; (2) that the stalks
Ky, are equal to the total fraction rings (Ox ). see [EGA IV,, 20.1.1
and 20.1.3, pp. 226-7]; and (3) that if X is a scheme and U = Spec (4) is

Using the internal language of toposes in algebraic geometry 8/27



See the notes for more dictionary entries.

The simple definition of Ky allows to give an internal account of the
basics of the theory of Cartier divisors, for instance giving an easy
description of the line bundle associated to a Cartier divisor.


https://rawgit.com/iblech/internal-methods/master/notes.pdf

Using the dictionary

Let0 > M — M — M’ — 0 be a short
exact sequence of modules. If M’ and M” are
finitely generated, so is M.

|

Let 0 - F' - F — F” — 0 be a short
exact sequence of sheaves of Ox-modules.
If 7/ and F” are of finite type, so is F.
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Using the dictionary

Any finitely generated vector space does not
not possess a basis.

Any sheaf of modules of finite type on a re-

duced scheme is locally free on a dense open
subset.

Ravi Vakil: “Important hard exercise” (13.7.K).
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The objective

Understand notions and statements of algebraic ge-
ometry as notions and statements of (intuitionistic)
commutative algebra internal to suitable toposes.

Further topics in the little Zariski topos:

Upper semicontinuous rank function
Transfer principles M <+ M~

The curious role of affine open subsets

n
n

® Quasicoherence

m Spreading from points to neighbourhoods
n

The relative spectrum
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The internal language of a topos supports

e first-order logic,
e higher-order logic (for instance quantification over subsets),
e dependent types, and

e unbounded quantification.

The first three items are standard. The fourth is due to Mike Shulman.
Combined, it’s possible to interpret “essentially all of constructive
mathematics” internal to a topos.

Restrictions persist for operations with a “set-theoretical flavor” like
building an infinite union of iterated powersets, for example | J,, .y P"(N).



The rank function of sheaves of modules

There is the following one-to-one correspondence:

upper semi-continuous
functions on X

external

i completed natural numbers

internal

Let M be a f.g. A-module. As- Let F be an Ox-module of
sume that A is a field. Then M i finite type. Assume that X

is free iff the minimal number

is reduced. Then F is lo-

of generators is an actual nat- cally free iff its rank is lo-

ural number.

cally constant.
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Proposition

If every inhabited subset of the natural numbers has a minimum, then
the law of excluded middle holds. (So in constructive mathematics,
one cannot prove the natural numbers to be complete in this sense.)

Proof

Let ¢ be an arbitrary formula. Define the subset

U={neN|n=1Vep} CN,

which surely is inhabited by 1 € U. So by assumption, there exists a
number z € N which is the minimum of U. We have

z=0 V 2z>0

(this is constructively not trivial, but can be proven by induction).
If z=0,wehave 0 € U,s00 =1V ¢, so ® holds.

If z > 0, then — holds: Because if ¢ were true, zero would be an
element of U, contradicting the minimality of z.



Proposition

The partially ordered set
N := {A C N| A inhabited and upward closed}

is the least partially ordered set containing N and possessing minima
of arbitrary inhabited subsets.

The embedding N — Nis given by

ne N 1(n):={meN|m>n}.

Proof

IfMC N is an inhabited subset, its minimum is
min M = U Me I/\\I .

The proof of the universal property is straightforward.



External translation (see Mulvey’s Intuitionistic algebra and

representations of rings)

Let X be a topological space and consider the constant sheaf N with
['(U,N) = {f: U— N| fcontinuous}. Internally, the sheaf N plays
the role of the ordinary natural numbers. Then there is an one-to-one
correspondence:

1. Let A < Nbe a subobject which is inhabited and upward closed
from the internal point of view. Then

x+— inf{neN|ne A}
is an upper semi-continuous function on X.
2. Let @ : X — N be a upper semi-continuous function. Then
UC X+ {f: U— N| fcontinuous, f> a on U}

is a subobject of N which internally is inhabited and upward
closed.



e Here is an explicit example of a completed natural number
which is not an ordinary natural number: Let X = Spec k[X]
and F = k[X]/(X — a)™. The rank of F is 1 at a and zero
elsewhere. It corresponds to the internal completed natural
number

z = min{n € N|"F can be generated by n elements™} =
min{n € N|n > 1V the element (X — a) of Oy is invertible'}.
We have the internal implications

ShiX) = "(X—a)inv.'=2z=0
Sh(X) =—-"(X—a)inv." = z=1,
but we do not have
Sh(X) E"(X—a)inv.m V =" (X— a) inv.",
which would imply
Sh(X) Ez=0Vvz=1,
i.e. the false statement that F is locally free (of ranks 0 resp. 1).



e Here is a constructive proof of the statement that finitely gener-
ated vector spaces, for which the minimal number of generators
is an actual natural numbers, are free:

By assumption, the minimal number n € N of generators for M
exists. Let xy, . .., x, be a generating family of minimal length n.
We want to verify that it’s linearly independent, so that it consti-
tutes a basis.

Let ) . \ix; = 0. If any \; were invertible, the shortened family
X1y« ey Xie1, Xit1, - - -, Xnp would also generate M. By minimality
of n, this is not possible. So each J; is not invertible. By the field
assumption on A, it follows that each J; is zero.

e In constructive mathematics, one can not show that every finitely
generated vector space over a field admits a finite basis. (Exercise:
Prove this by showing that this would imply the law of excluded
middle.) This is not because the space might strangely turn out
to be infinite-dimensional, but merely because one may not be
able to explicitly exhibit a finite basis.



Transfer principles

Question: How do the properties of

m an A-module M in Set and
m the Ox-module M~ in Sh(X), where X = Spec A, relate?

an important sheaf with M~ (X) = M
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Transfer principles

Question: How do the properties of

m an A-module M in Set and
m the Ox-module M~ in Sh(X), where X = Spec A, relate?

Observation: M~ = M[F '], where

m M is the constant sheaf with stalks M on X and
m F — Ais the generic prime filter.

Note: M and M share all first-order properties.
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Transfer principles

Question: How do the properties of

m an A-module M in Set and
m the Ox-module M~ in Sh(X), where X = Spec A, relate?

Observation: M~ = M[F '], where

m M is the constant sheaf with stalks M on X and
m F — Ais the generic prime filter.

Note: M and M share all first-order properties.

Answer: M~ inherits those properties of M which are
stable under localization.
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The concept of a prime filter is a direct axiomatization of what you
expect the complement of a prime ideal to fulfil. In classical logic,
complementation gives a bijection between the prime filters and the
prime ideals of a ring.

Prime filters are important in constructive mathematics because local-
izing them gives rise to local rings. In contrast, localizing a ring at the
complement of a prime ideal doesn’t usually result in a local ring.

To construct the universal localization of A, one doesn’t pick a partic-
ular prime filter F to construct A[F!]. Instead, one picks the generic
prime filter F. This filter doesn’t live in Set, but in Sh(Spec A).



The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(&/F)U) = E)/F(U)
(€ ®ox F)(U) = E(U) @oyw) F(U)
Eiors(U) = E(U)iors  (sometimes)
(

Kx(U) = Quot Ox(U) (sometimes)
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The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(&/F)U) = E)/F(U)
(€ ®ox F)(U) = E(U) @oyw) F(U)
Eiors(U) = E(U)iors  (sometimes)
(

Kx(U) = Quot Ox(U) (sometimes)
A calculation:

M @0, N* = M{F ] @a7—) N[F '] = (M &4 N)[F]
= (M@ N)[F'|=(M®4N)"~.
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The curious role of affine open subsets

Question: Why do the following identities hold, for
quasicoherent sheaves £ and F and affine open subsets U?

(€/F)(U) = E(U)/F(U)
(€ ®oy F)(U) = E(U) @oyw) F(U)

Eiors(U) = E(U)iors  (sometimes)
Kx(U) = Quot Ox(U) (sometimes)

A~ o~ o~ —~

A calculation:

M @0, N* = MF '] @47 NIF '] = (M@4 N)[F ]
= (M@ N)[F'|=(M®4N)"~.
Answer: Because localization commutes with quotients, tensor

products, torsion submodules (sometimes), ...
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A curious property of the structure sheaf

Let X be a scheme. Internally to Sh(X),

any non-invertible element of Oy is nilpotent.

ON THE SPECTRUM OF A RINGED TOPOS 209

For completeness, two further remarks should be added to this treatment
of the spectrum. One is that in E the canonical map A — T (LA) is an
isomorphism—i.e., the representation of A in the ring of “global sections”
of LA is complete. The second, due to Mulvey in the case E =S, is that
in Spec(E, A) the formula

(x € U(LA))= 3n(x" = 0)

is valid. This is surely important, though its precise significance is still
somewhat obscure—as is the case with many such nongeometric formulas.
In any case, calculations such as these are easier from the point of view of
the Heyting algebra of radical ideals of 4, and hence will be omitted here.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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Quasicoherence

Let X be a scheme. Let £ be an Ox-module.

Then £ is quasicoherent if and only if, internally to Sh(X),

E[f '] is a Ossheaf for any f: Oy,
where Ogp := (finvertible = ¢).
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Quasicoherence

Let X be a scheme. Let £ be an Ox-module.

Then £ is quasicoherent if and only if, internally to Sh(X),

E[f '] is a Ossheaf for any f: Oy,
where Ogp := (finvertible = ¢).

In particular: If £ is quasicoherent, then internally

(finvertible = s = 0) = \/f"s =0

n>0

for any f: Oxand s: &.
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The sheaf condition and the sheafification functor can be described
purely internally. An object M is separated with respect to U if and
only if, from the internal point of view,

Vx,y: M. O(x=y) = x=y.
It is a sheaf with respect to [, if furthermore

VKC M O03x: M K= {x}) = 3Ix: M. O(x € K).

The second condition displayed on the previous slide is equivalent
to the separatedness condition. In the special case £ = Oy, s = 1 it
reduces to Mulvey’s “somewhat obscure formula”. We now understand
this condition in its proper context.



The [l-translation

Let &5 — & be a subtopos given by a local operator. Then

EoFE

ift

EE ¢,

where the translation ¢ — " is given by:
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The [I-translation
Let &5 — & be a subtopos given by a local operator. Then

gD)ZQO iff g}:gom.

Let X be a scheme. Depending on [J, Sh(X) = Oy means
that ¢ holds on ...

. a dense open subset.

. a schematically dense open subset.

. an open subset containing a given closed subset A.

]
]
® ... a given open subset U.
]
]

. an open neighbourhood of a given point x € X.

Can tackle the question “p" =5 He” logically.

Using the internal language of toposes in algebraic geometry
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The U-translation is a generalization of the double negation translation,
which is well-known in logic. The double negation translation has the
following curious property: A formula ¢ admits a classical proof if
and only if the translated formula ¢~ admits an intuitionistic proof.

The [-translation has been studied before (see for instance Aczel: The
Russell-Prawitz modality, and Escardo, Oliva: The Peirce translation
and the double negation shift), but to the best of my knowledge, this
application — expressing the internal language of subtoposes in the
internal language of the ambient topos — is new.



For ease of exposition, assume that Xis irreducible with generic point £.
Let d := ——.

Then Sh(X) = Oy means that ¢ holds on a dense open subset of X,
while Sh(X) |= ¢ means that ¢ holds at the generic point (taking
stalks of all involved sheaves).

The question “does " imply (Jp?” therefore means: Does ¢ spread
from the generic point to a dense open subset?

For the special case of the double negation translation, a general
answer to this purely logical question has long been known: This
holds if ¢ is a geometric formula (doesn’t contain = and V).



Let F be a sheaf of modules on a locally ringed space X. Assume that
the stalk F at some point x € X vanishes. Then in general it does not
follow that F vanishes on some open neighbourhood of x.

This can be understood in logical terms: The statement that F van-
ishes,
Vs: F. s=0,

is not a geometric formula.

However, if F is additionally supposed to be of finite type, then it
does follow that 7 vanishes on an open neighbourhood. This too can
be understood in logical terms: If F is of finite type, then internally
there are generators sy, ..., s, of 7. Thus the vanishing of F can be
reformulated as

s1=0A---ANs, =0,

and this condition is manifestly geometric.



The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

Spec A := topological space of the prime ideals of A
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

. . . .1 1 . S—
Spec A := topological space-oftheprimeideatsof A

:= topological space of the prime filters of A
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.
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account of the spectrum:
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The absolute spectrum, internalised

Let A be a commutative ring in a topos £.

To construct the free local ring over A, give a constructive
account of the spectrum:

. . . -1 1 . N—.
Spec A := topological space-of-the-prinreidealsof A

. . N . o1 . S—
:= topological space-of-theprimrefiltersof A

:= locale of the prime filters of A

The frame of opens of Spec A is the frame of radical ideals in A.
Universal property:

Homygr/je|(T, Spec A) = Hompging(e) (A, 11+ O7)

for all locally ringed toposes T equipped with a geometric
morphism T % £.
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The axioms of a prime filter constitute a propositional geometric
theory. Therefore there exists the classifying locale over prime filters.
This is the ring’s spectrum. See Vicker’s Locales and Toposes as Spaces
and Continuity and geometric logic for very accessible introductions
to this topic.

Monique Hakim constructed in her thesis a very general spectrum
functor, taking a ringed topos to a locally ringed one, using explicit
calculations with sites.

Using the internal language allows to reduce these calculations to a
minimum. One constructs the spectrum as the sheaf topos over an
internal locale and then uses the general theorem that toposes over
the base & are the same as toposes internal to £.

As a byproduct one obtains that Hakim’s spectrum is localic over the
base.


http://www.cs.bham.ac.uk/~sjv/LocTopSpaces.pdf
http://www.cs.bham.ac.uk/~sjv/GeoAspects.pdf

The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
HOITILRL/X( T, SpecX A) = HomAlg(oX) (A, s OT)

for all locally ringed locales T over X.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
Homy gy /x(T, Specy A) =2 Homp(oy) (A, 11+ O7)

for all locally ringed locales T over X.

Beware of believing false statements
m Spec, Ox = X
m Spec A is the one-point locale iff every element of A is
invertible or nilpotent.
m Every element of Ox which is not invertible is nilpotent.

® Thus cannot prove Spec Ox = pt internally.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
HOITILRL/X( T, SpecX A) = HomAlg(oX) (A, s OT)

for all locally ringed locales T over X.

Solution: Define internally the frame of Spec, A to be the
frame of those radical ideals I C A such that

Vf:Ox.Vs: A. (finvertible in Ox = s€ ) = fs€ L.
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The relative spectrum

Let X be a scheme and A be a quasicoherent Ox-algebra. Can
we describe its relative spectrum Spec, A — X internally?

Desired universal property:
HOITILRL/X( T, SpecX A) = HomAlg(oX) (A, s OT)

for all locally ringed locales T over X.

Solution: Define internally the frame of Spec, A to be the
frame of those radical ideals I C A such that

Vf:Ox.Vs: A. (finvertible in Ox = s€ ) = fs€ L.
Its points are those prime filters G of A such that

Vf: Ox. o(f) € G=> finvertible in Oy.

Using the internal language of toposes in algebraic geometry 20/27



The stated condition on I is, under the assumption that A4 is qua-
sicoherent, equivalent to the condition that I is quasicoherent (as
an Ox-module).

The relative spectrum is thus constructed as a certain sublocale of
the absolute one. The two constructions coincide if and only if the
dimension of the base scheme is < 0.

If X is not a scheme or A is not quasicoherent, the construction still
gives rise to a locally ringed locale over X which satisfies the universal

property
HomLRL/X( T, §pe—CX 'A) = HomAlg((’)x) (*A’ M*OT)

for all locally ringed locales T £ X over X.



The relative spectrum, reformulated

Let B — A be an algebra in a topos.

Is there a free local and local-over-B ring A — A’ over A?

local

/_\ local
R

B A

7
7
7
7
AN
N
A/

local

Form limits in the category of locally ringed locales by
relocalizing the corresponding limit in ringed locales.
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One might wonder whether the absolute spectrum or the relative one
is “more fundamental”. The absolute spectrum can be expressed using
the relative one, since

Spec A = Specg,.. 7, A,

but the other way is not in general possible: The absolute spectrum is
always (quasi-)compact, while the relative one is not in general.



The big Zariski topos

Definition

The big Zariski topos Zar(S) of a scheme S is the category
Sh(Sch/S). It consists of certain functors (Sch/S)®? — Set.

Basic look and feel

m For an S-scheme X, its functor of points
X = Homyg(+, X)

is an object of Zar(S). It feels like the set of points of X.
m Internally, A§ (given by Ay(X) = Ox(X)) looks like a field:

Zar(S) = Vx: A x # 0 = "xinvertible”
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The overcategory Sch/S becomes a Grothendieck site by declar-
ing families of jointly surjective open immersions to be covers.
See for instance the excellent Stacks project for details.

Working in Zar(S) amounts to incorporating the philosophy
of describing schemes by their functors of points into one’s
mathematical language.

Explicitly, the functor X is given by X(T) = Homg(T, X) for S-
schemes T. Because the Zariski site is subcanonical, this functor
is always a sheaf.

The object S looks like an one-element set from the internal
universe. This is to be expected.



e Hakim worked out a theory of schemes internal to topoi (but without using the internal
language) in her PhD thesis.

e The internal language of Zar(Spec A) is related to the programme about dynamical
methods in algebra by Coquand, Coste, Lombardi, Roy, and others. See Coquand’s A
completeness proof for geometrical logic, Coquand and Lombardi’s A logical approach to
abstract algebra, and Coste, Lombardi, and Roy’s Dynamical methods in algebra: effective
Nulistellensdtze.

o The observation that A} is internally a field is due to Kock (in the case S = Spec Z, see
his Universal projective geometry via topos theory) and implies a curious meta-theorem:

Because Zar(Spec Z) is the classifying topos for the theory of local rings, any statement
about local rings which is of a certain logical form holds for the universal model &épec 7

iff it holds for any local ring (in any universe, particularly Set).

Therefore, in proving a statement of such a form about arbitrary local rings, one may
assume that they even fulfil the field condition.

There is a similar story for local A-algebras. See Wraith’s Intuitionistic algebra: some
recent developments in topos theory for a short exposition on the usefulness of classifying
topoi and universal models.



Some internal constructions

m The functor of points of P{ has the internal description

{(x0,- -, %) (A" %9 #£ 0V -V x, # 0} /scaling.

Using the internal language of toposes in algebraic geometry 23/27



Some internal constructions
m The functor of points of P{ has the internal description

{(x0,- -, %) (A" %9 #£ 0V -V x, # 0} /scaling.

m Let A be an Os-algebra. This induces an A ;-algebra A~
internal to Zar(S). The functor of points of Spec, A has
the internal description

Using the internal language of toposes in algebraic geometry 23/27



Some internal constructions

m The functor of points of P{ has the internal description

{(x0,- -, %) (A" %9 #£ 0V -V x, # 0} /scaling.

m Let A be an Os-algebra. This induces an A ;-algebra A~
internal to Zar(S). The functor of points of Spec, A has
the internal description

HomAlg(Aé) (ANv A}S) .

Using the internal language of toposes in algebraic geometry 23/27



Some internal constructions

m The functor of points of P{ has the internal description

{(x0,- -, %) (A" %9 #£ 0V -V x, # 0} /scaling.

m Let A be an Os-algebra. This induces an A ;-algebra A~
internal to Zar(S). The functor of points of Spec, A has
the internal description

HomAlg(Aé) (ANv A}S) .

m Let X be an S-scheme. The functor of points of its tangent
bundle has the internal description

Hom(A, X),
where A = {e: Aj|? = 0}.
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I'm grateful to Zhen Lin Low for suggesting the example about the
projective space.

Explicitly, the A§-algebra A" is given by

A (X5 8) = (1" A)(X).



A strong Kock-Lawvere axiom

m The affine line fulfils the axiom

Zar(S) = Mevery function A — Ay is a polynomial .

More precisely, the canonical morphism
Ag[T) — Hom(Homyy, s (A5[ T, Ag), As)

is an isomorphism.

m More generally, for any A-algebra A induced by a
quasicoherent Os-algebra, the canonical morphism

A— Hom(HomAlg(Aé) (A, AY), AY)
is an isomorphism.

Using the internal language of toposes in algebraic geometry
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The étale subtopos

Recall that the Kummer sequence is not exact in Zar(S) at the
third term:

1— i — (A< S Al 1
But we have:

Zar(S) = Vf: (A" Oa(3g: (Ay)*. f=g"),

where [, is such that Zar(S)p, < Zar(S) is the big étale
topos of S. It is the largest subtopos of Zar(S) where

TAj is separably closed™

holds [reinterpretation of Wraith, PSSL 1].
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Comparing the little and the big toposes

m There is a local geometric morphism Zar(S) — Sh(S).

m From the point of view of Sh(S), the big Zariski topos is
Zar(Os|Qs), the classifying topos of local Og-algebras
which are local over Os.

m From the point of view of Zar(S), the little Zariski topos is
the largest subtopos where AL — A} is bijective.

(PA5)(X = 8) = (171 04)(X)
AyX = S) = Ox(X)

Using the internal language of toposes in algebraic geometry 26/27



Semi-open and open tasks

m Characterise quasicoherence in the big Zariski topos.
m Understand how to work with b - f.

m Do cohomology in the little Zariski topos; exploit that
higher direct images look like ordinary sheaf cohomology
from the internal point of view.

m Do cohomology in the big Zariski topos.
m Understand more subtoposes of the big Zariski topos.

m Derive suitable axioms for synthetic algebraic geometry.

Using the internal language of toposes in algebraic geometry 27/27



Understand notions and statements of algebraic
geometry as notions and statements of algebra

internal to appropriate toposes.

rina Willbold

m Simplify proofs and gain conceptual understanding.
m Understand relative geometry as absolute geometry.
m Develop a synthetic account of scheme theory.

m Contribute to constructive algebra.

http://tiny.cc/topos-notes
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The sun as seen from our high-altitude balloon



Translating internal statements I

Let X be a topological space (or locale) and let o : 7 — G be a
morphism of sheaves on X. Then:

Sh(X) = "« is surjective
< Sh(X) EVt:G.3s: F.a(s) =t

<= for all open U C X, sections t € G(U):
there exists an open covering U = | J, U; and
sections s; € F(U;) such that:

ay,(si) = Yy,

<= « is an epimorphism of sheaves

Using the internal language of toposes in algebraic geometry
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Translating internal statements II

Let X be a topological space (or locale) and let s, t € F(X) be
global sections of a sheaf 7 on X. Then:

Sh(X) = ==(s=1)
<~ Sh(X)E((s=t)=1)= 1

<= for all open U C X such that
for all open V C U such that

sly = t|v,
it holds that V=0,
it holds that U= ()

<= there exists a dense open set W C X such that s|y = t|w
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Spreading from points to neighbourhoods

All of the following lemmas have a short, sometimes trivial
proof. Let F be a sheaf of finite type on a ringed space X.
Let x € X. Let A C X be a closed subset. Then:

Fyx = 0iff F|y = 0 for some open neighbourhood of x.
Fla = 0iff F|y = 0 for some open set containing A.

Fx can be generated by n elements iff this is true on some open
neighbourhood of x.

Homo, (F,G)x = Homo, ,(Fx, Gx) if F is of finite presentation
around x.

F is torsion iff F¢ vanishes (assume X integral and F
quasicoherent).

@A F is torsion iff F| Ass(Ox) Vanishes (assume X locally Noetherian
and F quasicoherent).
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Statements 1 and 2 follow from one proof in the internal language,
applied to two different modal operators.

Similarly with statements 5 and 6.



The smallest dense sublocale

Let X be a reduced scheme satisfying a technical condition.

Let i : X._, — Xbe the inclusion of the smallest dense sublocale
of X.

Then l* i_lox = IC)(.

m This is a highbrow way of saying “rational functions are
regular functions which are defined on a dense open sub-
set”.

m Another reformulation is that Ky is the sheafification of Ox
with respect to the =——-modality.

m There is a generalization to nonreduced schemes.
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Group schemes

Motto: Internal to Zar(S), group schemes look like ordinary

groups.
group scheme internal definition functor of points: X — ...
Ga Al (as additive group) Ox(X)
Gm {x:Al|"xinv.7} Ox(X)*
b [x: AL 2" = 1) [fe O£ = 1}
GL, {M: A" |"Minv.T}  GL,(Ox(X))
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Applications in algebra

Let A be a commutative ring. The internal language

of Sh(Spec A) allows you to say “without loss of generality, we
may assume that A is local”, even constructively.

The kernel of any matrix over a principial ideal
domain is finitely generated.

|

The kernel of any matrix over a Priifer domain
is finitely generated.
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Hilbert’s program in algebra

There is a way to combine some of the powerful tools of classical ring theory with the advan-
tages that constructive reasoning provides, for instance exhibiting explicit witnesses. Namely
we can devise a language in which we can usefully talk about prime ideals, but which sub-
stitutes non-constructive arguments by constructive arguments “behind the scenes”. The key
idea is to substitute the phrase “for all prime ideals” (or equivalently “for all prime filters”) by
“for the generic prime filter”.

More specifically, simply interpret a given proof using prime filters in Sh(Spec A) and let it
refer to F — A.

Statement constructive substitution meaning

x € p forall p. xg F. x is nilpotent.

x € p for all p such that y € p. xe€ F=yeF. x€ /().

x is regular in all stalks Ap. xis regular in A[F~1]. xis regular in A.
The stalks Ay are reduced. A[F 1] is reduced. A is reduced.
The stalks M, vanish. MF~1 =o. M=o.

The stalks My, are flat over Ap. M[F~1 is flat over A[F1]. M s flat over A.

The maps Mp — N, are injective. M[F~1] — N[F ] is injective. M — Nis injective.
The maps My — Np are surjective. ~ M[F '] — N[F 1] is surjective. = M — Nis surjective.

This is related (in a few cases equivalent) to the dynamical methods in algebra explored by
Coquand, Coste, Lombardi, Roy, and others. Their approach is more versatile.
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