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Let M be an injective matrix with ~ Generically, any finitely gen-
more columns than rows over a erated module over a reduced
ring A. Then 1 = 0in A. ring is free.

(A ring is reduced iff x" = 0 implies x = 0.)
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Summary

A baby cxampl

Let M be an injective matrix with
more columns than rows over a
ring A. Then 1 = 0in A.

Proof. Assume not. Then there
is a minimal prime ideal p C A.
The matrix is injective over the
field A, = A[(A\ p)~']; contra-
diction to basic linear algebra.

Generically, any finitely gen-
erated module over a reduced
ring is free.

(A ring is reduced iff x" = 0 implies x = 0.)
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Proof. See [Stacks Project].
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Summary

m For any reduced ring A, there is a ring A™ in a certain topos with
= (Vx:AY.=(Jy: A xy=1) = x=0).

m This semantics is sound with respect to intuitionistic logic.

m It has uses in classical and constructive commutative algebra.

A baby cxampl

Let M be an injective matrix with
more columns than rows over a
ring A. Then 1 = 0in A.

Proof. Assume not. Then there
is a minimal prime ideal p C A.
The matrix is injective over the
field A, = A[(A\ p)~']; contra-
diction to basic linear algebra.

Generically, any finitely gen-
erated module over a reduced
ring is free.

Proof. See [Stacks Project].
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The Kripke-Joyal semantics

Recall A[f~!] = {fl,, |u€ A, ne N} Let “i= ¢” be short for “1 |= ¢".

fET
fEL
fEx=y
fEeAY
fEevVY

frRe=v
fEYx:A~. ¢
fEIx:A. ¢

iff
iff
iff
iff
iff

T

f is nilpotent

x=y€Alf]

fEpamdf v

there exists a partition f" = fg; + - - - + fgn, with,
for each i, fgi = por fgi E ¢

forall g € A, fg = ¢ implies fg = 9

forall g € Aandall xy € A[(fg) ], fs E [x0/x]

there exists a partition f" = fg; + - - - + fg,, with,
for each i, fg; = p[x0/x| for some xy € A[(fg;) ']
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The little Zariski topos of a ring

Let A be a reduced commutative ring (x" = 0 = x = 0).

The little Zariski topos of A is equivalently
m the topos of sheaves over Spec(A),
m the locale given by the frame of radical ideals of A,
m the classifying topos of local localizations of A or
m the classifying topos of prime filters of A
and contains a mirror image of A, the sheaf of rings A™.

Assuming the Boolean prime ideal =~ A" inherits any property of A
theorem, a first-order formula which is localization-stable.
V... V.(--- = --+)”, where the

two subformulas may not con-  A™ isalocal ring and a field.
tain “=" and “V”, holds for A™ iff A~ has ——-stable equality,

it holds for all stalks Ay. A™ is anonymously Noetherian.
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The little Zariski topos of a ring

ON THE SPECTRUM OF A RINGED TOPOS 209

For completeness, two further remarks should be added to this treatment
of the spectrum. One is that in E the canonical map 4 - T (LA) is an
isomorphism—i.e., the representation of A4 in the ring of “global sections”
of LA is complete. The second, due to Mulvey in the case E =S, is that
in Spec(E, A) the formula

T1(x e U(LA))= In(x" = 0)

is valid. This is surely important, though its precise significance is still
somewhat obscure—as is the case with many such nongeometric formulas.
In any case, calculations such as these are easier from the point of view of
the Heyting algebra of radical ideals of 4, and hence will be omitted here.

Miles Tierney. On the spectrum of a ringed topos. 1976.
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Let A be a reduced commutative ring (x" = 0 = x = 0).
Let A~ be its mirror image in the little Zariski topos.

A baby cxample

Let M be an injective matrix
over A with more columns
than rows. Then 1 = 0 in A.

Proof. M is also injective as a
matrix over A™. Since A~ is a
field, this is a contradiction by
basic linear algebra. Thus = L.
This amounts to1 = 0 in A.

i

Revisiting the test cases

Let M be a finitely generated A-

module. If f = 0 is the only element

of A such that M[f '] is a free A[f ']-

module, then 1 = 0 in A.

Proof. The claim amounts to
= “M"™ is not not free”. Since A™ is
a field, this follows from basic linear
algebra.
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The Zariski topos and related toposes have applications in:

m classical algebra and classical algebraic geometry
m constructive algebra and constructive algebraic geometry

m synthetic algebraic geometry (“schemes are just sets”)

Connections with:




Further reading

Spiel und SpaB mit der internen Welt
des kleinen Zariski-Topos
Ingo Blechschmidt

19. Dezember 2013

«= Fiir dic gegebenen Elemente z,y € R gilt 7 =y,
= 1=1€R. (Dasist stets erfillt.)
= 1=0¢ R. (Das st genau in Nullringen erfiilt.)

REouwd R

€ R sodass
6 oder R[s7"] |- 0.

6=¢ e Fiirjedess € Rgilt: Aus Rs™"] |= 6 folgt Rls™] = ¢
REV2:0.¢ &= Firjedes s € Rund jedes x € Rls™!] gilt: R[s~) = o(2)

RE3r:0.¢ & Esgibt cine

Es gibt cine Zerlegung ¥, 5

fiir alle i jeweils Rls7!

€Rund

Elemente ; € R[s;"] sodass fiir alle i: Rls;'] = o(x,)

legung 3, s, =

Die Kripke-Joyal-Semantik des kleinen Zariski-Topos.

Using the internal language of toposes
in algebraic geometry

Dissertation
s Exlangung des akademischen Grades

Dr. rer. nat.

cingereicht an der

athematisch-Naturwissenschaftlich-Technischen Fakultit
der Universitiit Augsburg

von

Ingo Blechschmidt

Universitit
Augsburg
University

Juni 2017



https://pizzaseminar.speicherleck.de/skript2/zariski-topos-klein.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
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Applications in algebraic geometry

Understand notions of algebraic geometry over a
scheme X as notions of algebra internal to Sh(X).

externally internally to Sh(X)
sheaf of sets set
sheaf of modules module
sheaf of finite type finitely generated module
tensor product of sheaves tensor product of modules
sheaf of rational functions total quotient ring of Ox
dimension of X Krull dimension of Oy
spectrum of a sheaf of Ox-algebras ordinary spectrum [with a twist]
higher direct images sheaf cohomology
Let0 » F — F — F" — 0be Let0 > M - M—>M'—0

a short exact sequence of sheaves ¢ be a short exact sequence of
of Ox-modules. If 7' and F” are modules. If M’ and M" are
of finite type, so is F. finitely generated, so is M.
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Synthetic algebraic geometry

Usual approach to algebraic geometry: layer schemes above
ordinary set theory using either

m locally ringed spaces
set of prime ideals of Z[X, Y, Z] /(X" + Y" — Z") +
Zariski topology + structure sheaf

m or Grothendieck’s functor-of-points account, where a
scheme is a functor Ring — Set.

Ar—{(x,y,2) € A’ |x" +y" — 2" = 0}
Synthetic approach: model schemes directly as sets in a

certain nonclassical set theory, the internal universe of the
big Zariski topos of a base scheme.

{(x,,2) 1 (A1) [x" +y" — 2" = 0}
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